1887

Abstract

An aerobic methanotrophic bacterium was isolated from an acidic (pH 3.9) peat bog in north-eastern Russia and designated strain MG30. Cells of this strain were Gram-negative, pale pink-pigmented, non-motile, thick rods that were covered by large polysaccharide capsules and contained an intracytoplasmic membrane system typical of type I methanotrophs. They possessed a particulate methane monooxygenase enzyme (pMMO) and utilized only methane and methanol. Carbon was assimilated via the ribulose-monophosphate pathway; nitrogen was fixed via an oxygen-sensitive nitrogenase. Strain MG30 was able to grow at a pH range of 3.8–7.3 (optimum pH 5.8–6.4) and at temperatures between 8 and 30 °C (optimum 20–25 °C). The major cellular fatty acids were Cω5, Cω8, Cω7 and C; the DNA G+C content was 48.5 mol%. The isolate belongs to the family of the class and displayed 94.7–96.9 % 16S rRNA gene sequence similarity to members of the genus However, strain MG30 differed from all taxonomically characterized members of this genus by the absence of motility, the ability to grow in acidic conditions and low DNA G+C content. Therefore, we propose to classify this strain as representing a novel, acid-tolerant species of the genus , sp. nov. Strain MG30 ( = DSM 24973 = VKM B-2745) is the type strain.

Funding
This study was supported by the:
  • Russian Fund of Basic Research (Award 12-04-00768)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.045658-0
2013-06-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/6/2282.html?itemId=/content/journal/ijsem/10.1099/ijs.0.045658-0&mimeType=html&fmt=ahah

References

  1. Anthony C., Zatman L. J. ( 1964 ). The microbial oxidation of methanol. 2. The methanol-oxidizing enzyme of Pseudomonas sp. M 27. . Biochem J 92, 614621.[PubMed]
    [Google Scholar]
  2. Auman A. J., Lidstrom M. E. ( 2002 ). Analysis of sMMO-containing type I methanotrophs in Lake Washington sediment. . Environ Microbiol 4, 517524. [View Article] [PubMed]
    [Google Scholar]
  3. Auman A. J., Stolyar S., Costello A. M., Lidstrom M. E. ( 2000 ). Molecular characterization of methanotrophic isolates from freshwater lake sediment. . Appl Environ Microbiol 66, 52595266. [View Article] [PubMed]
    [Google Scholar]
  4. Beschastny A. P., Sokolov A. P., Khmelenina V. N., Trotsenko Y. A. ( 1992 ). Purification and properties of pyrophosphate-dependent phosphofructokinase of obligate methanotroph Methylomonas methanica . . Biochemistry (Moscow) 57, 12151221.
    [Google Scholar]
  5. Blackmore M. A., Quayle J. R. ( 1970 ). Microbial growth on oxalate by a route not involving glyoxylate carboligase. . Biochem J 118, 5359.[PubMed]
    [Google Scholar]
  6. Bowman J. P., Sly L. I., Cox J. M., Hayward A. C. ( 1990 ). Methylomonas fodinarum sp. nov. and Methylomonas aurantiaca sp. nov.: two closely related type I obligate methanotrophs. . Syst Appl Microbiol 13, 279287. [View Article]
    [Google Scholar]
  7. Bowman J. P., Skerratt J. H., Nichols P. D., Sly L. I. ( 1991 ). Phospholipid fatty acid and lipopolysaccharide fatty acid signature lipids in methane-utilizing bacteria. . FEMS Microbiol Ecol 85, 1522. [View Article]
    [Google Scholar]
  8. Bowman J. P., Sly L. I., Nichols P. D., Hayward A. C. ( 1993 ). Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. . Int J Syst Bacteriol 43, 735753. [View Article]
    [Google Scholar]
  9. Chen Y., Dumont M. G., McNamara N. P., Chamberlain P. M., Bodrossy L., Stralis-Pavese N., Murrell J. C. ( 2008 ). Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses. . Environ Microbiol 10, 446459. [View Article] [PubMed]
    [Google Scholar]
  10. Dedysh S. N., Liesack W., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Semrau J. D., Bares A. M., Panikov N. S., Tiedje J. M. ( 2000 ). Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. . Int J Syst Evol Microbiol 50, 955969. [View Article] [PubMed]
    [Google Scholar]
  11. Dedysh S. N., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Semrau J. D., Liesack W., Tiedje J. M. ( 2002 ). Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. . Int J Syst Evol Microbiol 52, 251261.[PubMed]
    [Google Scholar]
  12. Dedysh S. N., Ricke P., Liesack W. ( 2004 ). NifH and NifD phylogenies: an evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria. . Microbiology 150, 13011313. [View Article] [PubMed]
    [Google Scholar]
  13. Dedysh S. N., Belova S. E., Bodelier P. L., Smirnova K. V., Khmelenina V. N., Chidthaisong A., Trotsenko Y. A., Liesack W., Dunfield P. F. ( 2007 ). Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing ‘signature’ fatty acids of type I methanotrophs. . Int J Syst Evol Microbiol 57, 472479. [View Article] [PubMed]
    [Google Scholar]
  14. Dianou D., Ueno C., Ogiso T., Kimura M., Asakawa S. ( 2012 ). Diversity of cultivable methane-oxidizing bacteria in microsites of a rice paddy field: investigation by cultivation method and fluorescence in situ hybridization (FISH). . Microbes Environ 27, 278287. [View Article] [PubMed]
    [Google Scholar]
  15. Eller G., Stubner S., Frenzel P. ( 2001 ). Group-specific 16S rRNA targeted probes for the detection of type I and type II methanotrophs by fluorescence in situ hybridisation. . FEMS Microbiol Lett 198, 9197. [View Article] [PubMed]
    [Google Scholar]
  16. Felsenstein J. ( 1989 ). phylip – phylogeny inference package (version 3.2). . Cladistics 5, 164166.
    [Google Scholar]
  17. Ferenci T., Strom T., Quayle J. R. ( 1974 ). Purification and properties of 3-hexulose phosphate synthase and phospho-3-hexuloisomerase from Methylococcus capsulatus . . Biochem J 144, 477486.[PubMed]
    [Google Scholar]
  18. Graham D. W., Korich D. G., LeBlanc R. P., Sinclair N. A., Arnold R. G. ( 1992 ). Applications of a colorimetric plate assay for soluble methane monooxygenase activity. . Appl Environ Microbiol 58, 22312236.[PubMed]
    [Google Scholar]
  19. Holmes A. J., Costello A., Lidstrom M. E., Murrell J. C. ( 1995 ). Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. . FEMS Microbiol Lett 132, 203208. [View Article] [PubMed]
    [Google Scholar]
  20. Hutchens E., Radajewski S., Dumont M. G., McDonald I. R., Murrell J. C. ( 2004 ). Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. . Environ Microbiol 6, 111120. [View Article] [PubMed]
    [Google Scholar]
  21. Jaatinen K., Tuittila E.-S., Laine J., Yrjälä K., Fritze H. ( 2005 ). Methane-oxidizing bacteria in a Finnish raised mire complex: effects of site fertility and drainage. . Microb Ecol 50, 429439. [View Article] [PubMed]
    [Google Scholar]
  22. Johnson P. A., Quayle J. R. ( 1964 ). Microbial growth on C-1 compounds. 6. Oxidation of methanol, formaldehyde and formate by methanol-grown Pseudomonas AM-1. . Biochem J 93, 281290.[PubMed]
    [Google Scholar]
  23. Kalyuzhnaya M. G., Khmelenina V. N., Kotelnikova S., Holmquist L., Pedersen K., Trotsenko Y. A. ( 1999 ). Methylomonas scandinavica sp. nov., a new methanotrophic psychrotrophic bacterium isolated from deep igneous rock ground water of Sweden. . Syst Appl Microbiol 22, 565572. [View Article] [PubMed]
    [Google Scholar]
  24. Kip N., Dutilh B. E., Pan Y., Bodrossy L., Neveling K., Kwint M. P., Jetten M. S., Op den Camp H. J. ( 2011a ). Ultra-deep pyrosequencing of pmoA amplicons confirms the prevalence of Methylomonas and Methylocystis in Sphagnum mosses from a Dutch peat bog. . Env Microb Rep 3, 667673. [View Article]
    [Google Scholar]
  25. Kip N., Ouyang W., van Winden J., Raghoebarsing A., van Niftrik L., Pol A., Pan Y., Bodrossy L., van Donselaar E. G. et al. ( 2011b ). Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses. . Appl Environ Microbiol 77, 56435654. [View Article] [PubMed]
    [Google Scholar]
  26. Kornberg A., Horecker B. L. ( 1955 ). Glucose-6-phosphate dehydrogenase. . Methods Enzymol 1, 323327. [View Article]
    [Google Scholar]
  27. Lin J. L., Radajewski S., Eshinimaev B. T., Trotsenko Y. A., McDonald I. R., Murrell J. C. ( 2004 ). Molecular diversity of methanotrophs in Transbaikal soda lake sediments and identification of potentially active populations by stable isotope probing. . Environ Microbiol 6, 10491060. [View Article] [PubMed]
    [Google Scholar]
  28. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. ( 2004 ). arb: a software environment for sequence data. . Nucleic Acids Res 32, 13631371. [View Article] [PubMed]
    [Google Scholar]
  29. Lüke C., Krause S., Cavigiolo S., Greppi D., Lupotto E., Frenzel P. ( 2010 ). Biogeography of wetland rice methanotrophs. . Environ Microbiol 12, 862872. [View Article] [PubMed]
    [Google Scholar]
  30. McDonald I. R., Murrell J. C. ( 1997 ). The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. . Appl Environ Microbiol 63, 32183224.[PubMed]
    [Google Scholar]
  31. Miguez C. B., Bourque D., Sealy J. A., Greer C. W., Groleau D. ( 1997 ). Detection and isolation of methanotrophic bacteria possessing soluble methane monooxygenase (sMMO) genes using the polymerase chain reaction (PCR). . Microb Ecol 33, 2131. [View Article] [PubMed]
    [Google Scholar]
  32. Morris S. A., Radajewski S., Willison T. W., Murrell J. C. ( 2002 ). Identification of the functionally active methanotroph population in a peat soil microcosm by stable-isotope probing. . Appl Environ Microbiol 68, 14461453. [View Article] [PubMed]
    [Google Scholar]
  33. Ogiso T., Ueno C., Dianou D., Huy T. V., Katayama A., Kimura M., Asakawa S. ( 2012 ). Methylomonas koyamae sp. nov., a type I methane-oxidizing bacterium from floodwater of a rice paddy field. . Int J Syst Evol Microbiol 62, 18321837. [View Article] [PubMed]
    [Google Scholar]
  34. Owen R. J., Hill L. R., Lapage S. P. ( 1969 ). Determination of DNA base compositions from melting profiles in dilute buffers. . Biopolymers 7, 503516. [View Article] [PubMed]
    [Google Scholar]
  35. Reynolds E. S. ( 1963 ). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. . J Cell Biol 17, 208212. [View Article] [PubMed]
    [Google Scholar]
  36. Schacterle G. R., Pollack R. L. ( 1973 ). A simplified method for the quantitative assay of small amounts of protein in biologic material. . Anal Biochem 51, 654655. [View Article] [PubMed]
    [Google Scholar]
  37. Söhngen N. L. ( 1906 ). Uber bakterien, welche methan ab kohlenstoffnahrung and energiequelle gebrauchen. . Parasitenkd Infectionskr 15, 513517.
    [Google Scholar]
  38. van Dijken J. P., Quayle J. R. ( 1977 ). Fructose metabolism in four Pseudomonas species. . Arch Microbiol 114, 281286. [View Article] [PubMed]
    [Google Scholar]
  39. Vorobev A. V., Baani M., Doronina N. V., Brady A. L., Liesack W., Dunfield P. F., Dedysh S. N. ( 2011 ). Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium possessing only a soluble methane monooxygenase. . Int J Syst Evol Microbiol 61, 24562463. [View Article] [PubMed]
    [Google Scholar]
  40. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. ( 1991 ). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173, 697703.[PubMed]
    [Google Scholar]
  41. Whittenbury R., Krieg N. R. ( 1984 ). Genus II. Methylomonas . . In Bergey’s Manual of Systematic Bacteriology, vol. 1, pp. 260261. Edited by Krieg N. R., Holt J. G. . Baltimore:: Williams & Wilkins Co;.
    [Google Scholar]
  42. Whittenbury R., Phillips K. C., Wilkinson J. F. ( 1970 ). Enrichment, isolation and some properties of methane-utilizing bacteria. . J Gen Microbiol 61, 205218.[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.045658-0
Loading
/content/journal/ijsem/10.1099/ijs.0.045658-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error