1887

Abstract

An actinomycete, strain 2602GPT1-05, was isolated from a composite mangrove soil sample collected from Wenchang, Hainan province, China. Strain 2602GPT1-05 showed closest 16S rRNA gene sequence similarity to 232617 (99.05 %), and phylogenetically clustered with 232617, IMSNU 22003 (98.7 %) and AM105 (98.6 %) based on the 16S rRNA and gene sequence phylogenetic analysis. The strain harboured -DAP and glycine as major cell-wall amino acids, and MK-10(H) and MK-9(H) as predominant menaquinones. The characteristic whole-cell sugars were xylose, arabinose, glucose and galactose. The polar lipid profile comprised phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol, phosphatidylglycerol, phosphatidylinositol mannosides, unknown phospholipid and an unknown phosphoglycolipid. The major cellular fatty acids were Cω9, iso-C, 10-methyl C (tuberculostearic acid), C, C and iso-C. The DNA G+C content was 71.7 mol%. Furthermore, some physiological and biochemical properties and low DNA–DNA relatedness values enabled the strain to be differentiated from members of closely related species. On the basis of these phenotypic, genotypic and chemotaxonomic data, strain 2602GPT1-05 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 2602GPT1-05 ( = CCTCC AA 2012002 = DSM 45709).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.045476-0
2013-07-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/7/2389.html?itemId=/content/journal/ijsem/10.1099/ijs.0.045476-0&mimeType=html&fmt=ahah

References

  1. Arai T.. ( 1975;). Culture Media for Actinomycetes. Tokyo:: The Society for Actinomycetes Japan;.
    [Google Scholar]
  2. Bérdy J.. ( 2005;). Bioactive microbial metabolites. . J Antibiot (Tokyo) 58:, 1–26. [CrossRef][PubMed]
    [Google Scholar]
  3. Carro L., Pukall R., Spröer C., Kroppenstedt R. M., Trujillo M. E.. ( 2012;). Micromonospora cremea sp. nov. and Micromonospora zamorensis sp. nov., isolated from the rhizosphere of Pisum sativum.. Int J Syst Evol Microbiol 62:, 2971–2977. [CrossRef][PubMed]
    [Google Scholar]
  4. Castiglione F., Lazzarini A., Carrano L., Corti E., Ciciliato I., Gastaldo L., Candiani P., Losi D., Marinelli F.. & other authors ( 2008;). Determining the structure and mode of action of microbisporicin, a potent lantibiotic active against multiresistant pathogens. . Chem Biol 15:, 22–31. [CrossRef][PubMed]
    [Google Scholar]
  5. Eccleston G. P., Brooks P. R., Kurtböke D. I.. ( 2008;). The occurrence of bioactive micromonosporae in aquatic habitats of the Sunshine Coast in Australia. . Mar Drugs 6:, 243–261. [CrossRef][PubMed]
    [Google Scholar]
  6. Everest G. J., Meyers P. R.. ( 2012;). Micromonospora equina sp. nov., isolated from soil from a racecourse in South Africa. . Int J Syst Evol Microbiol. [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  8. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  9. García L. C., Martínez-Molina E., Trujillo M. E.. ( 2010;). Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum.. Int J Syst Evol Microbiol 60:, 331–337. [CrossRef][PubMed]
    [Google Scholar]
  10. Hong K., Gao A. H., Xie Q. Y., Gao H., Zhuang L., Lin H. P., Yu H. P., Li J., Yao X. S.. & other authors ( 2009;). Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. . Mar Drugs 7:, 24–44. [CrossRef][PubMed]
    [Google Scholar]
  11. Huang H. Q., Lv J. S., Hu Y. H., Fang Z., Zhang K. S., Bao S. X.. ( 2008;). Micromonospora rifamycinica sp. nov., a novel actinomycete from mangrove sediment. . Int J Syst Evol Microbiol 58:, 17–20. [CrossRef][PubMed]
    [Google Scholar]
  12. Kasai H., Tamura T., Harayama S.. ( 2000;). Intrageneric relationships among Micromonospora species deduced from gyrB-based phylogeny and DNA relatedness. . Int J Syst Evol Microbiol 50:, 127–134. [CrossRef][PubMed]
    [Google Scholar]
  13. Kathiresan K., Bingham B. L.. ( 2001;). Biology of mangroves and mangrove ecosystems. . Adv Mar Biol 40:, 81–251. [CrossRef]
    [Google Scholar]
  14. Kawamoto I.. ( 1989;). Genus Micromonospora. . In Bergey’s Manual of Systematic Bacteriology, vol. 4, pp. 2442–2450. Edited by Williams S. T., Sharpe M. E., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  15. Kelly K. L.. ( 1964;). Inter-Society Color Council–National Bureau of Standards Color Name Charts Illustrated with Centroid Colors. Washington, DC:: US Government Printing Office;.
    [Google Scholar]
  16. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  17. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  18. Lechevalier M. P., Lechevalier H. A.. ( 1980;). The chemotaxonomy of actinomycetes. . In Actinomycete Taxonomy, (Special Publication of the Society for Industrial Microbiology 6) pp. 227–291. Edited by Dietz A, Thayer D. W... Arlington, VA:: Society of Industrial Microbiology;.
    [Google Scholar]
  19. Lechevalier M. P., De Bievre C., Lechevalier H.. ( 1977;). Chemotaxonomy of aerobic actinomycetes: phospholipid composition. . Biochem Syst Ecol 5:, 249–260. [CrossRef]
    [Google Scholar]
  20. Lee S. D., Goodfellow M., Hah Y. C.. ( 1999;). A phylogenetic analysis of the genus Catellatospora based on 16S ribosomal DNA sequences, including transfer of Catellatospora matsumotoense to the genus Micromonospora as Micromonospora matsumotoense comb. nov. . FEMS Microbiol Lett 178:, 349–354. [CrossRef][PubMed]
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  22. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. K.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  23. Ochi K.. ( 1987;). Metabolic initiation of differentiation and secondary metabolism by Streptomyces griseus: significance of the stringent response (ppGpp) and GTP content in relation to A factor. . J Bacteriol 169:, 3608–3616.[PubMed]
    [Google Scholar]
  24. Ørskov J.. ( 1923;). Investigations into the Morphology of the Ray Fungi. Copenhagen:: Levin and Munksgaard;.
    [Google Scholar]
  25. Pospiech A., Neumann B.. ( 1995;). A versatile quick-prep of genomic DNA from Gram-positive bacteria. . Trends Genet 11:, 217–218. [CrossRef][PubMed]
    [Google Scholar]
  26. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  27. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note 101. Newark, DE: Microbial ID.
  28. Shirling E. B., Gottlieb D.. ( 1966;). Methods for characterization of Streptomyces species. . Int J Syst Bacteriol 16:, 313–340. [CrossRef]
    [Google Scholar]
  29. Songsumanus A., Tanasupawat S., Igarashi Y., Kudo T.. ( 2013;). Micromonospora maritima sp. nov., isolated from mangrove soil. . Int J Syst Evol Microbiol 63:, 554–559. [CrossRef][PubMed]
    [Google Scholar]
  30. Supong K., Suriyachadkun C., Tanasupawat S., Suwanborirux K., Pittayakhajonwut P., Kudo T., Thawai C.. ( 2013;). Micromonospora sediminicola sp. nov., isolated from marine sediment. . Int J Syst Evol Microbiol 63:, 570–575. [CrossRef][PubMed]
    [Google Scholar]
  31. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). MEGA4, molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  32. Thawai C., Tanasupawat S., Itoh T., Suwanborirux K., Kudo T.. ( 2005;). Micromonospora siamensis sp. nov., isolated from Thai peat swamp forest. . J Gen Appl Microbiol 51:, 229–234. [CrossRef][PubMed]
    [Google Scholar]
  33. Thawai C., Tanasupawat S., Kudo T.. ( 2008;). Micromonospora pattaloongensis sp. nov., isolated from a Thai mangrove forest. . Int J Syst Evol Microbiol 58:, 1516–1521. [CrossRef][PubMed]
    [Google Scholar]
  34. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  35. Trujillo M. E., Fernández-Molinero C., Velázquez E., Kroppenstedt R. M., Schumann P., Mateos P. F., Martínez-Molina E.. ( 2005;). Micromonospora mirobrigensis sp. nov. . Int J Syst Evol Microbiol 55:, 877–880. [CrossRef][PubMed]
    [Google Scholar]
  36. Trujillo M. E., Kroppenstedt R. M., Schumann P., Martínez-Molina E.. ( 2006;). Kribbella lupini sp. nov., isolated from the roots of Lupinus angustifolius. . Int J Syst Evol Microbiol 56:, 407–411. [CrossRef][PubMed]
    [Google Scholar]
  37. Uchida K., Aida K.. ( 1984;). An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. . J Gen Appl Microbiol 30:, 131–134. [CrossRef]
    [Google Scholar]
  38. Waksman S. A.. ( 1967;). The Actinomycetes. A Summary of Current Knowledge. New York:: Ronald Press;.
    [Google Scholar]
  39. Wang P.. ( 1986;). TLC – a fast mensuration for amino acid and monosaccharide on actinomycete. . Microbiology (China) 13:, 228–230.
    [Google Scholar]
  40. Wang C., Xu X. X., Qu Z., Wang H. L., Lin H. P., Xie Q. Y., Ruan J. S., Hong K.. ( 2011;). Micromonospora rhizosphaerae sp. nov., isolated from mangrove rhizosphere soil. . Int J Syst Evol Microbiol 61:, 320–324. [CrossRef][PubMed]
    [Google Scholar]
  41. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  42. Williams S. T., Cross T.. ( 1971;). Actinomycetes. . In Methods in Microbiology, vol. 4, pp. 295–334. Edited by Booth C... London:: Academic Press;.
    [Google Scholar]
  43. Xie Q. Y., Qu Z., Lin H. P., Li L., Hong K.. ( 2012;). Micromonospora haikouensis sp. nov., isolated from mangrove soil. . Antonie van Leeuwenhoek 101:, 649–655. [CrossRef][PubMed]
    [Google Scholar]
  44. Zhang L. M., Xi L. J., Ruan J. S., Huang Y.. ( 2012;). Micromonospora yangpuensis sp. nov., isolated from a sponge. . Int J Syst Evol Microbiol 62:, 272–278. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.045476-0
Loading
/content/journal/ijsem/10.1099/ijs.0.045476-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error