1887

Abstract

Analysis of the 16S rRNA gene sequences of species currently assigned to the genus has shown an extensive intrageneric phylogenetic heterogeneity. The 16S rRNA gene sequence of ATCC 43741 shows only 82.2–85.9 % sequence similarity to type strains of other members of the genus and <88.5 % sequence similarity to recognised species of the most closely related genera, (88.4–88.5 %), (87.3–87.8 %) and (87.2−87.9 %). Furthermore, ATCC 43741 could not be assigned to an existing family by phylogenetic analysis. The predominant menaquinone was MK-7. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, one unidentified phospholipid and two unidentified glycolipids. The major fatty acids were iso-C, C, iso-C and anteiso-C. Both the polar lipid profile and the fatty acid composition clearly distinguished DSM 2000 from the type species of the genus . Hence, there is no evidence for a clear phenotypic grouping of this organism into the genus nor to the genera , or . A proposal is made to transfer to a novel genus and species, gen. nov., comb. nov., and to emend the species description. The type strain of the type species is DSM 2000 ( = ATCC 43741 = CCUG 26017 = CIP 106933).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.045146-0
2013-05-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/5/1723.html?itemId=/content/journal/ijsem/10.1099/ijs.0.045146-0&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H. J. .( 1996;). Classification of bacteria isolated from a medieval wall painting. . J Biotechnol 47:, 39–52. [CrossRef]
    [Google Scholar]
  2. Aragno M.. ( 1978;). Enrichment, isolation and preliminary characterization of a thermophilic, endospore forming hydrogen bacterium. . FEMS Microbiol Lett 3:, 13–15. [CrossRef]
    [Google Scholar]
  3. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F.. ( 1978;). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. . Proc Natl Acad Sci U S A 75:, 4801–4805. [CrossRef][PubMed]
    [Google Scholar]
  4. Coorevits A., Dinsdale A. E., Halket G., Lebbe L., De Vos P., Van Landschoot A., Logan N. A.. ( 2012;). Taxonomic revision of the genus Geobacillus: emendation of Geobacillus, G. stearothermophilus, G. jurassicus, G. toebii, G. thermodenitrificans and G. thermoglucosidans (nom. corrig., formerly ‘thermoglucosidasius’); transfer of Bacillus thermantarcticus to the genus as G. thermantarcticus; proposal of Caldibacillus debilis gen. nov., comb. nov.; transfer of G. tepidamans to Anoxybacillus as A. tepidamans and proposal of Anoxybacillus caldiproteolyticus sp. nov.. Int J Syst Evol Microbiol 62:, 1470–1485. [CrossRef][PubMed]
    [Google Scholar]
  5. Euzéby J.. ( 1981;). Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB: List No. 6. . Int J Syst Bacteriol 31:, 215–218. [CrossRef]
    [Google Scholar]
  6. Felsenstein J.. ( 1985;). Confidence limits of phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  7. Felsenstein, J. (2005). phylip (phylogeny inference package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  8. Hatayama K., Shoun H., Ueda Y., Nakamura A.. ( 2005;). Planifilum fimeticola gen. nov., sp. nov. and Planifilum fulgidum sp. nov., novel members of the family ‘Thermoactinomycetaceae’ isolated from compost. . Int J Syst Evol Microbiol 55:, 2101–2104. [CrossRef][PubMed]
    [Google Scholar]
  9. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of the protein molecules. . In Mammalian Protein Metabolism, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;.
    [Google Scholar]
  10. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  11. Kämpfer P., Steiof M., Dott W.. ( 1991;). Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol 21:, 227–251. [CrossRef]
    [Google Scholar]
  12. Kämpfer P., Rosselló-Mora R., Falsen E., Busse H.-J., Tindall B.J.. ( 2006;). Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis’ as Cohnella hongkongensis sp. nov.. Int J Syst Evol Microbiol 56:, 781–786. [CrossRef][PubMed]
    [Google Scholar]
  13. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  14. Miñana-Galbis D., Pinzón D. L., Lorén J. G., Manresa A., Oliart-Ros R. M.. ( 2010;). Reclassification of Geobacillus pallidus (Scholz et al. 1988) Banat et al. 2004 as Aeribacillus pallidus gen. nov., comb. nov.. Int J Syst Evol Microbiol 60:, 1600–1604. [CrossRef][PubMed]
    [Google Scholar]
  15. Nazina T. N., Tourova T. P., Poltaraus A. B., Novikova E. V., Grigoryan A. A., Ivanova A. E., Lysenko A. M., Petrunyaka V. V., Osipov G. A.. & other authors ( 2001;). Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov., and Geobacillu suzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasiusand G. thermodenitrificans. . Int J Syst Evol Microbiol 51:, 433–446.[PubMed]
    [Google Scholar]
  16. Pinkwart M., Schneider K., Schlegel H. G.. ( 1983;). The hydrogenase of a thermophilic hydrogen-oxidizing bacterium. . FEMS Microbiol Lett 17:, 137–141. [CrossRef]
    [Google Scholar]
  17. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O.. ( 2007;). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. . Nucleic Acids Res 35:, 7188–7196. [CrossRef][PubMed]
    [Google Scholar]
  18. Schenk A., Aragno M.. ( 1979;). Bacillus schlegelii, a new species of thermophilic facultatively chemolithoautotrophic bacterium oxidizing molecular hydrogen. . J Gen Microbiol 115:, 333–341. [CrossRef]
    [Google Scholar]
  19. Stamatakis A.. ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics22:, 2688–2690. [CrossRef][PubMed]
    [Google Scholar]
  20. Stolz A., Busse H.-J., Kämpfer P.. ( 2007;). Pseudomonas knackmussii sp. nov.. Int J Syst Evol Microbiol 57:, 572–576. [CrossRef][PubMed]
    [Google Scholar]
  21. Xue Y., Zhang X., Zhou C., Zhao Y., Cowan D. A., Heaphy S., Grant W. D., Jones B. E., Ventosa A., Ma Y.. ( 2006;). Caldalkalibacillus thermarum gen. nov., sp. nov., a novel alkalithermophilic bacterium from a hot spring in China. . Int J Syst Evol Microbiol 56:, 1217–1221. [CrossRef][PubMed]
    [Google Scholar]
  22. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. ( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol 31:, 241–250. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.045146-0
Loading
/content/journal/ijsem/10.1099/ijs.0.045146-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error