1887

Abstract

Gut-associated bacteria were isolated in axenic culture from the honey bee and the bumble bees and and are here placed in the novel genera and species gen. nov., sp. nov. and gen. nov., sp. nov. Two strains from were characterized and are proposed as the type strains of (type strain wkB2  = NCIMB 14803  = ATCC BAA-2449  = NRRL B-59751) and (type strain wkB1  = NCIMB 14804  = ATCC BAA-2448), representing, respectively, phylotypes referred to as ‘Betaproteobacteria’ and ‘Gammaproteobacteria-1’/‘Gamma-1’ in earlier publications. These strains grew optimally under microaerophilic conditions, and did not grow readily under a normal atmosphere. The predominant fatty acids in both strains were palmitic acid (C) and -vaccenic acid (Cω7 and/or Cω6), and both strains had ubiquinone-8 as their major respiratory quinone. The DNA G+C contents were 41.3 and 33.6 mol% for wkB2 and wkB1, respectively. The strains from honey bees and bumble bees formed a novel clade within the family of the , showing about 94 % 16S rRNA gene sequence identity to their closest relatives, species of , and . The strains showed the highest 16S rRNA gene sequence identity to CN3 (93.9 %) and several sequences from uncultured insect-associated bacteria. Phylogenetic reconstruction using conserved, single-copy amino acid sequences showed as sister to the order of the . Given its large sequence divergence from and basal position to the well-established order , we propose to place the clade encompassing and in a new family and order, fam. nov. and ord. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.044875-0
2013-06-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/6/2008.html?itemId=/content/journal/ijsem/10.1099/ijs.0.044875-0&mimeType=html&fmt=ahah

References

  1. Alippi A. M. , Albo G. N. , Reynaldi F. J. , De Giusti M. R. . ( 2005; ). In vitro and in vivo susceptibility of the honeybee bacterial pathogen Paenibacillus larvae subsp. larvae to the antibiotic tylosin. . Vet Microbiol 109:, 47–55. [CrossRef] [PubMed]
    [Google Scholar]
  2. Babendreier D. , Joller D. , Romeis J. , Bigler F. , Widmer F. . ( 2007; ). Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. . FEMS Microbiol Ecol 59:, 600–610. [CrossRef] [PubMed]
    [Google Scholar]
  3. Brenner D. J. , Kreig N. R. , Staley J. T. , Garrity G. M. . (editors) ( 2005;). Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2B. New York:: Springer;.
    [Google Scholar]
  4. Brune A. , Emerson D. , Breznak J. A. . ( 1995; ). The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. . Appl Environ Microbiol 61:, 2681–2687.[PubMed]
    [Google Scholar]
  5. Chandler J. A. , Lang J. M. , Bhatnagar S. , Eisen J. A. , Kopp A. . ( 2011; ). Bacterial communities of diverse Drosophila species: ecological context of a host-microbe model system. . PLoS Genet 7:, e1002272. [CrossRef] [PubMed]
    [Google Scholar]
  6. Dillon R. J. , Dillon V. M. . ( 2004; ). The gut bacteria of insects: nonpathogenic interactions. . Annu Rev Entomol 49:, 71–92. [CrossRef] [PubMed]
    [Google Scholar]
  7. Disayathanoowat T. , Young J. P. , Helgason T. , Chantawannakul P. . ( 2012; ). T-RFLP analysis of bacterial communities in the midguts of Apis mellifera and Apis cerana honey bees in Thailand. . FEMS Microbiol Ecol 79:, 273–281. [CrossRef] [PubMed]
    [Google Scholar]
  8. Engel P. , Martinson V. G. , Moran N. A. . ( 2012; ). Functional diversity within the simple gut microbiota of the honey bee. . Proc Natl Acad Sci U S A 109:, 11002–11007. [CrossRef] [PubMed]
    [Google Scholar]
  9. Gilliam M. . ( 1997; ). Identification and roles of non-pathogenic microflora associated with honey bees. . FEMS Microbiol Lett 155:, 1–10. [CrossRef]
    [Google Scholar]
  10. Hebert P. D. , Penton E. H. , Burns J. M. , Janzen D. H. , Hallwachs W. . ( 2004; ). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator . . Proc Natl Acad Sci U S A 101:, 14812–14817. [CrossRef] [PubMed]
    [Google Scholar]
  11. Hedlund B. P. , Staley J. T. . ( 2002; ). Phylogeny of the genus Simonsiella and other members of the Neisseriaceae . . Int J Syst Evol Microbiol 52:, 1377–1382. [CrossRef] [PubMed]
    [Google Scholar]
  12. Jeyaprakash A. , Hoy M. A. , Allsopp M. H. . ( 2003; ). Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using 16S rRNA sequences. . J Invertebr Pathol 84:, 96–103. [CrossRef] [PubMed]
    [Google Scholar]
  13. Killer J. , Kopecný J. , Mrázek J. , Rada V. , Benada O. , Koppová I. , Havlík J. , Straka J. . ( 2009; ). Bifidobacterium bombi sp. nov., from the bumblebee digestive tract. . Int J Syst Evol Microbiol 59:, 2020–2024. [CrossRef] [PubMed]
    [Google Scholar]
  14. Killer J. , Kopecný J. , Mrázek J. , Rada V. , Dubná S. , Marounek M. . ( 2010; ). Bifidobacteria in the digestive tract of bumblebees. . Anaerobe 16:, 165–170. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kim J. Y. , Lee J. , Shin N. R. , Yun J. H. , Whon T. W. , Kim M. S. , Jung M. J. , Roh S. W. , Hyun D. W. , Bae J. W. . ( 2013; ). Orbus sasakiae sp. nov., a bacterium isolated from the gut of the butterfly Sasakia charonda, and emended description of the genus Orbus . . Int J Syst Evol Microbiol 63:, 1766–1770.[PubMed] [CrossRef]
    [Google Scholar]
  16. Koch H. , Schmid-Hempel P. . ( 2011a; ). Bacterial communities in central European bumblebees: low diversity and high specificity. . Microb Ecol 62:, 121–133. [CrossRef] [PubMed]
    [Google Scholar]
  17. Koch H. , Schmid-Hempel P. . ( 2011b; ). Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. . Proc Natl Acad Sci U S A 108:, 19288–19292. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kuhn D. A. , Gregory D. A. , Nyby M. D. , Mandel M. . ( 1977; ). Deoxyribonucleic acid base composition of Simonsiellaceae. . Arch Microbiol 113:, 205–207. [CrossRef] [PubMed]
    [Google Scholar]
  19. Lawson P. A. , Malnick H. , Collins M. D. , Shah J. J. , Chattaway M. A. , Bendall R. , Hartley J. W. . ( 2005; ). Description of Kingella potus sp. nov., an organism isolated from a wound caused by an animal bite. . J Clin Microbiol 43:, 3526–3529. [CrossRef] [PubMed]
    [Google Scholar]
  20. Ludwig W. , Strunk O. , Klugbauer S. , Klugbauer N. , Weizenegger M. , Neumaier J. , Bachleitner M. , Schleifer K. H. . ( 1998; ). Bacterial phylogeny based on comparative sequence analysis. . Electrophoresis 19:, 554–568. [CrossRef] [PubMed]
    [Google Scholar]
  21. Martinson V. G. , Danforth B. N. , Minckley R. L. , Rueppell O. , Tingek S. , Moran N. A. . ( 2011; ). A simple and distinctive microbiota associated with honey bees and bumble bees. . Mol Ecol 20:, 619–628. [CrossRef] [PubMed]
    [Google Scholar]
  22. Martinson V. G. , Moy J. , Moran N. A. . ( 2012; ). Establishment of characteristic gut bacteria during development of the honeybee worker. . Appl Environ Microbiol 78:, 2830–2840. [CrossRef] [PubMed]
    [Google Scholar]
  23. Minnikin D. E. , O’Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  24. Moran N. A. , Hansen A. K. , Powell J. E. , Sabree Z. L. . ( 2012; ). Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. . PLoS ONE 7:, e36393. [CrossRef] [PubMed]
    [Google Scholar]
  25. Olofsson T. C. , Vásquez A. . ( 2008; ). Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera . . Curr Microbiol 57:, 356–363. [CrossRef] [PubMed]
    [Google Scholar]
  26. Steed P. A. . ( 1962; ). Simonsiellaceae fam. nov. with characterization of Simonsiella crassa and Alysiella filiformis . . J Gen Microbiol 29:, 615–624.[PubMed] [CrossRef]
    [Google Scholar]
  27. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  28. Tindall B. J. , Sikorski J. , Smibert R. M. , Kreig N. R. . ( 2007; ). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, , 3rd edn., pp. 330–393. Edited by Reddy C. A. , Beveridge T. J. , Breznak J. A. , Marzluf G. , Schmidt T. M. , Snyder L. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  29. Vela A. I. , Collins M. D. , Lawson P. A. , García N. , Domínguez L. , Fernández-Garayzábal J. F. . ( 2005; ). Uruburuella suis gen. nov., sp. nov., isolated from clinical specimens of pigs. . Int J Syst Evol Microbiol 55:, 643–647. [CrossRef] [PubMed]
    [Google Scholar]
  30. Volkmann M. , Skiebe E. , Kerrinnes T. , Faber F. , Lepka D. , Pfeifer Y. , Holland G. , Bannert N. , Wilharm G. . ( 2010; ). Orbus hercynius gen. nov., sp. nov., isolated from faeces of wild boar, is most closely related to members of the orders ‘Enterobacteriales’ and Pasteurellales . . Int J Syst Evol Microbiol 60:, 2601–2605. [CrossRef] [PubMed]
    [Google Scholar]
  31. Wertz J. T. , Breznak J. A. . ( 2007a; ). Stenoxybacter acetivorans gen. nov., sp. nov., an acetate-oxidizing obligate microaerophile among diverse O2-consuming bacteria from termite guts. . Appl Environ Microbiol 73:, 6819–6828. [CrossRef] [PubMed]
    [Google Scholar]
  32. Wertz J. T. , Breznak J. A. . ( 2007b; ). Physiological ecology of Stenoxybacter acetivorans, an obligate microaerophile in termite guts. . Appl Environ Microbiol 73:, 6829–6841. [CrossRef] [PubMed]
    [Google Scholar]
  33. Williams K. P. , Gillespie J. J. , Sobral B. W. , Nordberg E. K. , Snyder E. E. , Shallom J. M. , Dickerman A. W. . ( 2010; ). Phylogeny of gammaproteobacteria. . J Bacteriol 192:, 2305–2314. [CrossRef] [PubMed]
    [Google Scholar]
  34. Xie C. H. , Yokota A. . ( 2005; ). Phylogenetic analysis of Alysiella and related genera of Neisseriaceae: proposal of Alysiella crassa comb. nov., Conchiformibium steedae gen. nov., comb. nov., Conchiformibium kuhniae sp. nov. and Bergeriella denitrificans gen. nov., comb. nov.. J Gen Appl Microbiol 51:, 1–10. [CrossRef] [PubMed]
    [Google Scholar]
  35. Yoshiyama M. , Kimura K. . ( 2009; ). Bacteria in the gut of Japanese honeybee, Apis cerana japonica, and their antagonistic effect against Paenibacillus larvae, the causal agent of American foulbrood. . J Invertebr Pathol 102:, 91–96. [CrossRef] [PubMed]
    [Google Scholar]
  36. Zerbino D. R. , Birney E. . ( 2008; ). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. . Genome Res 18:, 821–829. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.044875-0
Loading
/content/journal/ijsem/10.1099/ijs.0.044875-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error