1887

Abstract

Three halophilic archaeal strains, MH1-34-1, MH1-16-1 and MH1-224-5 were isolated from commercial salt samples produced from seawater in Indonesia, the Philippines and Japan, respectively. Cells of the three strains were pleomorphic and stained Gram-negative. Strain MH1-34-1 was orange–red pigmented, while MH1-16-1 and MH1-224-5 were pink-pigmented. Strain MH1-34-1 was able to grow at 12–30 % (w/v) NaCl (with optimum at 18 % NaCl, w/v) at pH 4.5–7.2 (optimum, pH 5.2–5.5) and at 15–45 °C (optimum, 42 °C). Strains MH1-16-1 and MH1-224-5 grew in slightly different ranges. These strains required at least 1 mM Mg for growth. The 16S rRNA gene sequences of strains MH1-34-1, MH1-16-1 and MH1-224-5 were almost identical (99.8–99.9 % similarities), and the closest relative was MH-1-52-1 with 98.4 % similarities. The DNA G+C contents of MH1-34-1, MH1-16-1 and MH1-224-5 were 59.3, 60.8 and 61.0 mol%, respectively. The level of DNA–DNA relatedness amongst the three strains was 90–91 %, while that between each of the three strains and MH1-52-1 was 51–55 %. Based on the phenotypic, genotypic and phylogenetic analyses, it is proposed that the isolates should represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MH1-34-1 ( = JCM 16330 = CECT 7574).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.044693-0
2013-03-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/3/1138.html?itemId=/content/journal/ijsem/10.1099/ijs.0.044693-0&mimeType=html&fmt=ahah

References

  1. Cline S. W., Schalkwyk L. C., Doolittle W. F.. ( 1989;). Transformation of the archaebacterium Halobacterium volcanii with genomic DNA. . J Bacteriol 171:, 4987–4991.[PubMed]
    [Google Scholar]
  2. Dussault H. P.. ( 1955;). An improved technique for staining red halophilic bacteria. . J Bacteriol 70:, 484–485.[PubMed]
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  4. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: An approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  5. Felsenstein J.. ( 2002;). phylip (phylogeney inference package), version 3.6a. Distributed by the author, University of Washington, Seattle, USA.
  6. Gonzalez C., Gutierrez C., Ramirez C.. ( 1978;). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. . Can J Microbiol 24:, 710–715. [CrossRef][PubMed]
    [Google Scholar]
  7. Gutiérrez M. C., Castillo A. M., Kamekura M., Ventosa A.. ( 2008;). Haloterrigena salina sp. nov., an extremely halophilic archaeon isolated from a salt lake. . Int J Syst Evol Microbiol 58:, 2880–2884. [CrossRef][PubMed]
    [Google Scholar]
  8. Kamekura M.. ( 1993;). Lipids of extreme halophiles. . In The Biology of Halophilic Bacteria, pp. 135–161. Edited by Vreeland R. H., Hochstein L. I... Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  9. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). clustal w and clustal_x version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  10. Minegishi H., Mizuki T., Echigo A., Fukushima T., Kamekura M., Usami R.. ( 2008;). Acidophilic haloarchaeal strains are isolated from various solar salts. . Saline Syst 4:, 16. [CrossRef][PubMed]
    [Google Scholar]
  11. Minegishi H., Echigo A., Nagaoka S., Kamekura M., Usami R.. ( 2010;). Halarchaeum acidiphilum gen. nov., sp. nov., a moderately acidophilic haloarchaeon isolated from commercial solar salt. . Int J Syst Evol Microbiol 60:, 2513–2516. [CrossRef][PubMed]
    [Google Scholar]
  12. Minegishi H., Kamekura M., Kitajima-Ihara T., Nakasone K., Echigo A., Shimane Y., Usami R., Itoh T., Ihara K.. ( 2012;). Gene orders in the upstream of 16S rRNA genes divide genera of the family Halobacteriaceae into two groups. . Int J Syst Evol Microbiol 62:, 188–195. [CrossRef][PubMed]
    [Google Scholar]
  13. Miyazaki S., Sugawara H., Gojobori T., Tateno Y.. ( 2003;). DNA Data Bank of Japan (DDBJ) in XML. . Nucleic Acids Res 31:, 13–16. [CrossRef][PubMed]
    [Google Scholar]
  14. Oren A., Ventosa A., Grant W. D.. ( 1997;). Proposed minimal standards for description of new taxa in the order Halobacteriales. . Int J Syst Bacteriol 47:, 233–238. [CrossRef]
    [Google Scholar]
  15. Pearson W. R., Lipman D. J.. ( 1988;). Improved tools for biological sequence comparison. . Proc Natl Acad Sci U S A 85:, 2444–2448. [CrossRef][PubMed]
    [Google Scholar]
  16. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  17. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  18. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33:, 152–155.
    [Google Scholar]
  19. Stamatakis A., Ludwig T., Meier H.. ( 2005;). RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. . Bioinformatics 21:, 456–463. [CrossRef][PubMed]
    [Google Scholar]
  20. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  21. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.044693-0
Loading
/content/journal/ijsem/10.1099/ijs.0.044693-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error