1887

Abstract

A novel Gram-negative, rod–coccus shaped, non-motile, strain, RS-3, was isolated from a sediment sample collected from the marine transect of Kongsfjorden, Ny-Ålesund, Svalbard, Arctic. Colonies and broth cultures were yellowish in colour due to the presence of carotenoids. Strain RS-3 was positive for oxidase, aesculinase, caseinase, gelatinase and urease activities and negative for amylase, catalase, lipase, lysine decarboxylase, ornithine decarboxylase, DNase and β-galactosidase activities. The predominant fatty acids were iso-C (18.0), anteiso-C (16.8), iso-C G (14.2), anteiso-C A (6.0) and iso-C 3-OH (6.8). Strain RS-3 contained MK-6 (72.42 %) and MK-7 (27.58 %) as the major respiratory quinones and phosphatidylethanolamine, two unidentified aminolipids and two unidentified lipids make up the polar lipid composition. The DNA G+C content of strain RS-3 was 34.7±1.2 mol%. The 16S rRNA gene sequence analysis indicated that and are the most closely related species with sequence similarities to the type strains of these species of 98.5 and 97.7 %, respectively. However, DNA–DNA hybridization with KCTC 22997 and DSM 15363 showed a relatedness of 22 and 42.5 % with respect to strain RS-3. Based on the DNA–DNA hybridization values, phenotypic and chemotaxonomic characteristics and phylogenetic inference, strain RS-3 is proposed as a novel species of the genus , for which the name sp. nov. is proposed. The type strain of sp. nov. is RS-3 ( = CIP 110154 = NBRC 106169). An emended description of the genus is provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.044669-0
2013-05-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/5/1646.html?itemId=/content/journal/ijsem/10.1099/ijs.0.044669-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990; ). Basic local alignment search tool. . J Mol Biol 215:, 403–410.[PubMed] [CrossRef]
    [Google Scholar]
  2. Collins M. D. , Pirouz T. , Goodfellow M. , Minnikin D. E. . ( 1977; ). Distribution of menaquinones in Actinomycetes and Corynebacteria . . J Gen Microbiol 100:, 221–230.[PubMed] [CrossRef]
    [Google Scholar]
  3. Felsenstein J. . ( 1993; ). phylip (phylogeny inference package) version 3.5.1. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  4. Groth I. , Schumann P. , Rainey F. A. , Martin K. , Schuetze B. , Augsten K. . ( 1997; ). Demetria terragena sp. nov., a new genus of Actinomycetes isolated from compost soil. . Int J Syst Bacteriol 47:, 1129–1133. [CrossRef] [PubMed]
    [Google Scholar]
  5. Guindon S. , Lethiec F. , Duroux P. , Gascuel O. . ( 2005; ). PHYML Online–a web server for fast maximum likelihood-based phylogenetic inference. . Nucleic Acids Res 33: (Web Server issue), W557–W559. [CrossRef] [PubMed]
    [Google Scholar]
  6. Ivanova E. P. , Christen R. , Gorshkova N. M. , Zhukova N. V. , Kurilenko V. V. , Crawford R. J. , Mikhailov V. V. . ( 2010; ). Winogradskyella exilis sp. nov., isolated from the starfish Stellaster equestris, and emended description of the genus Winogradskyella . . Int J Syst Evol Microbiol 60:, 1577–1580. [CrossRef] [PubMed]
    [Google Scholar]
  7. Kim S. B. , Nedashkovskaya O. I. . ( 2010; ). Winogradskyella pacifica sp. nov., a marine bacterium of the family Flavobacteriaceae . . Int J Syst Evol Microbiol 60:, 1948–1951. [CrossRef] [PubMed]
    [Google Scholar]
  8. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  9. Komagata K. , Suzuki K. . ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  10. Lane D. J. . ( 1991; ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Good Fellow M. . . Chichester:: Wiley;.
    [Google Scholar]
  11. Lányí B. . ( 1987; ). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19:, 1–67. [CrossRef]
    [Google Scholar]
  12. Lau S. C. K. , Tsoi M. M. Y. , Li X. , Plakhotnikova I. , Dobretsov S. , Lau K. W. K. , Wu M. , Wong P. K. , Pawlik J. R. , Qian P. Y. . ( 2005; ). Winogradskyella poriferorum sp. nov., a novel member of the family Flavobacteriaceae isolated from a sponge in the Bahamas. . Int J Syst Evol Microbiol 55:, 1589–1592. [CrossRef] [PubMed]
    [Google Scholar]
  13. Marmur J. . ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  14. Nedashkovskaya O. I. , Kim S. B. , Han S. K. , Snauwaert C. , Vancanneyt M. , Swings J. , Kim K. O. , Lysenko A. M. , Rohde M. . & other authors ( 2005; ). Winogradskyella thalassocola gen. nov., sp. nov., Winogradskyella epiphytica sp. nov. and Winogradskyella eximia sp. nov., marine bacteria of the family Flavobacteriaceae . . Int J Syst Evol Microbiol 55:, 49–55. [CrossRef] [PubMed]
    [Google Scholar]
  15. Nedashkovskaya O. I. , Vancanneyt M. , Kim S. B. , Zhukova N. V. . ( 2009; ). Winogradskyella echinorum sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from the sea urchin Strongylocentrotus intermedius . . Int J Syst Evol Microbiol 59:, 1465–1468. [CrossRef] [PubMed]
    [Google Scholar]
  16. Nedashkovskaya O. I. , Kukhlevskiy A. D. , Zhukova N. V. . ( 2012; ). Winogradskyella ulvae sp. nov., a novel epiphyte of a Pacific seaweed and emended descriptions of the genus Winogradskyella and Winogradskyella thalassocola, Winogradskyella echinorum, Winogradskyella exilis and Winogradskyella eximia . . Int J Syst Evol Microbiol 62:, 1450–1456. [CrossRef] [PubMed]
    [Google Scholar]
  17. Pinhassi J. , Nedashkovskaya O. I. , Hagström Å. , Vancanneyt M. . ( 2009; ). Winogradskyella rapida sp. nov., isolated from protein-enriched seawater. . Int J Syst Evol Microbiol 59:, 2180–2184. [CrossRef] [PubMed]
    [Google Scholar]
  18. Reddy G. S. N. , Aggarwal R. K. , Matsumoto G. I. , Shivaji S. . ( 2000; ). Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. . Int J Syst Evol Microbiol 50:, 1553–1561. [CrossRef] [PubMed]
    [Google Scholar]
  19. Romanenko L. A. , Tanaka N. , Frolova G. M. , Mikhailov V. V. . ( 2009; ). Winogradskyella arenosi sp. nov., a member of the family Flavobacteriaceae isolated from marine sediments from the Sea of Japan. . Int J Syst Evol Microbiol 59:, 1443–1446. [CrossRef] [PubMed]
    [Google Scholar]
  20. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  21. Shivaji S. , Ray M. K. , Shyamala Rao N. , Saisree L. , Jagannadham M. V. , Seshu Kumar G. , Reddy G. S. N. , Bhargava P. M. . ( 1992; ). Sphingobacterium antarcticus sp. nov.: a psychrotrophic bacterium from the soils of Schirmacher Oasis, Antarctica. . Int J Syst Bacteriol 42:, 102–106. [CrossRef]
    [Google Scholar]
  22. Sly L. I. , Blackall L. L. , Kraat P. C. , Tian-Shen T. , Sangkhobol V. . ( 1986; ). The use of second derivative plots for the determination of mol% guanine plus cytosine of DNA by the thermal denaturation method. . J Microbiol Methods 5:, 139–156. [CrossRef]
    [Google Scholar]
  23. Smibert R. M. , Krieg N. R. . ( 1994; ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  24. Srinivas T. N. R. , Nageswara Rao S. S. S. , Vishnu Vardhan Reddy P. , Pratibha M. S. , Sailaja B. , Kavya B. , Hara Kishore K. , Begum Z. , Singh S. M. , Shivaji S. . ( 2009; ). Bacterial diversity and bioprospecting for cold-active lipases, amylases and proteases, from culturable bacteria of Kongsfjorden and Ny-alesund, Svalbard, Arctic. . Curr Microbiol 59:, 537–547. [CrossRef] [PubMed]
    [Google Scholar]
  25. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. , Higgins D. G. . ( 1997; ). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  26. Tourova T. P. , Antonov A. S. . ( 1988; ). Identification of microorganisms by rapid DNA–DNA hybridisation. . Methods Microbiol 19:, 333–355. [CrossRef]
    [Google Scholar]
  27. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  28. Yoon B. J. , Byun H. D. , Kim J. Y. , Lee D. H. , Kahng H. Y. , Oh D. C. . ( 2011; ). Winogradskyella lutea sp. nov., isolated from seawater, and emended description of the genus Winogradskyella . . Int J Syst Evol Microbiol 61:, 1539–1543. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.044669-0
Loading
/content/journal/ijsem/10.1099/ijs.0.044669-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error