1887

Abstract

A hyperthermophilic, anaerobic, piezophilic archaeon (strain DY20341) was isolated from a sediment sample collected from an East Pacific Ocean hydrothermal field (1° 37′ S 102° 45′ W) at a depth of 2737 m. The cells were irregular cocci, 0.8–1.5 µm in diameter. Growth was observed between 50 and 90 °C (optimum 80 °C), pH 5.0 and 8.0 (optimum pH 7.0), 1 % and 7 % (w/v) sea salts (Sigma, optimum 3 %), 1 % and 4 % (w/v) NaCl (optimum 3 %) and 0.1 and 80 MPa (optimum 30 MPa). The minimum doubling time was 66 min at 30 MPa and 80 °C. The isolate was an obligate chemoorganoheterotroph, capable of utilizing complex organic compounds and organic acids including yeast extract, peptone, tryptone, casein, starch, Casamino acids, citrate, lactate, acetate, fumarate, propanoate and pyruvate for growth. It was strictly anaerobic and facultatively dependent on elemental sulfur or sulfate as electron acceptors, but did not reduce sulfite, thiosulfate, Fe(III) or nitrate. The presence of elemental sulfur enhanced growth. The G+C content of the genomic DNA was 43.6±1 mol%. 16S rRNA gene sequence analysis revealed that the closest relative of the isolated organism was DMJ (95.7 % 16S rRNA gene similarity). On the basis of its physiological properties and phylogenetic analyses, the isolate is considered to represent a novel species, for which the name sp. nov. is proposed. The type strain is strain DY20341 ( = JCM 17873 = DSM 24777).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.044487-0
2013-06-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/6/2155.html?itemId=/content/journal/ijsem/10.1099/ijs.0.044487-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Amend J. P., Meyer-Dombard D. R., Sheth S. N., Zolotova N., Amend A. C.. ( 2003;). Palaeococcus helgesonii sp. nov., a facultatively anaerobic, hyperthermophilic archaeon from a geothermal well on Vulcano Island, Italy. . Arch Microbiol 179:, 394–401.[PubMed]
    [Google Scholar]
  3. Birrien J. L., Zeng X., Jebbar M., Cambon-Bonavita M. A., Quérellou J., Oger P., Bienvenu N., Xiao X., Prieur D.. ( 2011;). Pyrococcus yayanosii sp. nov., an obligate piezophilic hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. . Int J Syst Evol Microbiol 61:, 2827–2831. [CrossRef][PubMed]
    [Google Scholar]
  4. Blamey J., Chiong M., López C., Smith E.. ( 1999;). Optimization of the growth conditions of the extremely thermophilic microorganisms Thermococcus celer and Pyrococcus woesei. . J Microbiol Methods 38:, 169–175. [CrossRef][PubMed]
    [Google Scholar]
  5. Erauso G., Reysenbach A. L., Godfroy A., Meunier J. R., Crump B., Partensky F., Baross J. A., Marteinsson V., Barbier G. et al. ( 1993;). Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. . Arch Microbiol 160:, 338–349. [CrossRef]
    [Google Scholar]
  6. Fiala G., Stetter K. O.. ( 1986;). Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C. . Arch Microbiol 145:, 56–61. [CrossRef]
    [Google Scholar]
  7. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  8. Kuwabara T., Minaba M., Ogi N., Kamekura M.. ( 2007;). Thermococcus celericrescens sp. nov., a fast-growing and cell-fusing hyperthermophilic archaeon from a deep-sea hydrothermal vent. . Int J Syst Evol Microbiol 57:, 437–443. [CrossRef][PubMed]
    [Google Scholar]
  9. Marteinsson V. T., Birrien J. L., Reysenbach A. L., Vernet M., Marie D., Gambacorta A., Messner P., Sleytr U. B., Prieur D.. ( 1999;). Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. . Int J Syst Bacteriol 49:, 351–359. [CrossRef][PubMed]
    [Google Scholar]
  10. Mesbah M., Whitman W. B.. ( 1989;). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. . J Chromatogr A 479:, 297–306. [CrossRef][PubMed]
    [Google Scholar]
  11. Noll K. M., Childers S. E.. ( 2000;). Sulfur metabolism among hyperthermophiles. . In: Journey to Diverse Microbial Worlds (Cellular Origin, Life in Extreme Habitats and Astrobiology vol. 2), 93–105. Edited by Seckbach J... New York:: Springer;. [CrossRef]
    [Google Scholar]
  12. Rosselló-Mora R., Amann R.. ( 2001;). The species concept for prokaryotes. . FEMS Microbiol Rev 25:, 39–67. [CrossRef][PubMed]
    [Google Scholar]
  13. Pikuta E. V., Marsic D., Itoh T., Bej A. K., Tang J., Whitman W. B., Ng J. D., Garriott O. K., Hoover R. B.. ( 2007;). Thermococcus thioreducens sp. nov., a novel hyperthermophilic, obligately sulfur-reducing archaeon from a deep-sea hydrothermal vent. . Int J Syst Evol Microbiol 57:, 1612–1618. [CrossRef][PubMed]
    [Google Scholar]
  14. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33:, 152–155.
    [Google Scholar]
  15. Takai K., Sugai A., Itoh T., Horikoshi K.. ( 2000;). Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. . Int J Syst Evol Microbiol 50:, 489–500. [CrossRef][PubMed]
    [Google Scholar]
  16. Zeng X., Birrien J. L., Fouquet Y., Cherkashov G., Jebbar M., Querellou J., Oger P., Cambon-Bonavita M. A., Xiao X., Prieur D.. ( 2009;). Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure-temperature limits for life. . ISME J 3:, 873–876. [CrossRef][PubMed]
    [Google Scholar]
  17. Zhang Z., Schwartz S., Wagner L., Miller W.. ( 2000;). A greedy algorithm for aligning DNA sequences. . J Comput Biol 7:, 203–214. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.044487-0
Loading
/content/journal/ijsem/10.1099/ijs.0.044487-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error