1887

Abstract

A magnetotactic bacterium, designated strain MV-1, was isolated from sulfide-rich sediments in a salt marsh near Boston, MA, USA. Cells of strain MV-1 were Gram-negative, and vibrioid to helicoid in morphology. Cells were motile by means of a single polar flagellum. The cells appeared to display a transitional state between axial and polar magnetotaxis: cells swam in both directions, but generally had longer excursions in one direction than the other. Cells possessed a single chain of magnetosomes containing truncated hexaoctahedral crystals of magnetite, positioned along the long axis of the cell. Strain MV-1 was a microaerophile that was also capable of anaerobic growth on some nitrogen oxides. Salinities greater than 10 % seawater were required for growth. Strain MV-1 exhibited chemolithoautotrophic growth on thiosulfate and sulfide with oxygen as the terminal electron acceptor (microaerobic growth) and on thiosulfate using nitrous oxide (NO) as the terminal electron acceptor (anaerobic growth). Chemo-organoautotrophic and methylotrophic growth was supported by formate under microaerobic conditions. Autotrophic growth occurred via the Calvin–Benson–Bassham cycle. Chemo-organoheterotrophic growth was supported by various organic acids and amino acids, under microaerobic and anaerobic conditions. Optimal growth occurred at pH 7.0 and 26–28 °C. The genome of strain MV-1 consisted of a single, circular chromosome, about 3.7 Mb in size, with a G+C content of 52.9–53.5 mol%.Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain MV-1 belongs to the family within the , but is not closely related to the genus . The name gen. nov., sp. nov. is proposed for strain MV-1. The type strain of is MV-1 ( = ATCC BAA-1436  = DSM 18854).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.044453-0
2013-05-01
2019-08-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/5/1824.html?itemId=/content/journal/ijsem/10.1099/ijs.0.044453-0&mimeType=html&fmt=ahah

References

  1. Bazylinski D. A. . ( 1991; ). Anaerobic production of single-domain magnetite by the marine, magnetotactic bacterium, strain MV-1. . In Iron Biominerals, pp. 69–77. Edited by Frankel R. B. , Blakemore R. P. . . New York:: Plenum Press;. [CrossRef]
    [Google Scholar]
  2. Bazylinski D. A. , Blakemore R. P. . ( 1983a; ). Nitrogen fixation (acetylene reduction) in Aquaspirillum magnetotacticum . . Curr Microbiol 9:, 305–308. [CrossRef]
    [Google Scholar]
  3. Bazylinski D. A. , Blakemore R. P. . ( 1983b; ). Denitrification and assimilatory nitrate reduction in Aquaspirillum magnetotacticum . . Appl Environ Microbiol 46:, 1118–1124.[PubMed]
    [Google Scholar]
  4. Bazylinski D. A. , Frankel R. B. . ( 2004; ). Magnetosome formation in prokaryotes. . Nat Rev Microbiol 2:, 217–230. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bazylinski D. A. , Williams T. J. . ( 2007; ). Ecophysiology of magnetotactic bacteria. . In Magnetoreception and Magnetosomes in Bacteria, vol. 3, pp. 37–75. Edited by Schüler D. . . Berlin:: Springer;. [CrossRef]
    [Google Scholar]
  6. Bazylinski D. A. , Frankel D. B. , Jannasch H. W. . ( 1988; ). Anaerobic magnetite production by a marine, magnetotactic bacterium. . Nature 334:, 518–519. [CrossRef]
    [Google Scholar]
  7. Bazylinski D. A. , Frankel R. B. , Heywood B. R. , Mann S. , King J. W. , Donaghay P. L. , Hanson A. K. . ( 1995; ). Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium. . Appl Environ Microbiol 61:, 3232–3239.[PubMed]
    [Google Scholar]
  8. Bazylinski D. A. , Dean A. J. , Schüler D. , Phillips E. J. P. , Lovley D. R. . ( 2000; ). N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. . Environ Microbiol 2:, 266–273. [CrossRef] [PubMed]
    [Google Scholar]
  9. Bazylinski D. A. , Dean A. J. , Williams T. J. , Long L. K. , Middleton S. L. , Dubbels B. L. . ( 2004; ). Chemolithoautotrophy in the marine, magnetotactic bacterial strains MV-1 and MV-2. . Arch Microbiol 182:, 373–387. [CrossRef] [PubMed]
    [Google Scholar]
  10. Bazylinski D. A. , Williams T. J. , Lefèvre C. T. , Berg R. J. , Zhang C. L. , Bowser S. S. , Dean A. J. , Beveridge T. J. . ( 2013; ). Magnetococcus marinus gen. nov., sp. nov., a marine, magnetotactic bacterium that represents a novel lineage (Magnetococcaceae fam. nov., Magnetococcales ord. nov.) at the base of the Alphaproteobacteria . . Int J Syst Evol Microbiol 63:, 801–808.[PubMed] [CrossRef]
    [Google Scholar]
  11. Bellini S. . ( 2009; ). On a unique behavior of freshwater bacteria. . Chi J Oceanogr Limnol 27:, 3–5. [CrossRef]
    [Google Scholar]
  12. Blakemore R. P. . ( 1975; ). Magnetotactic bacteria. . Science 190:, 377–379. [CrossRef] [PubMed]
    [Google Scholar]
  13. Blakemore R. P. , Maratea D. , Wolfe R. S. . ( 1979; ). Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. . J Bacteriol 140:, 720–729.[PubMed]
    [Google Scholar]
  14. Blakemore R. P. , Short K. A. , Bazylinski D. A. , Rosenblatt C. , Frankel R. B. . ( 1985; ). Microaerobic conditions are required for magnetite formation within Aquaspirillum magnetotacticum . . Geomicrobiol J 4:, 53–71. [CrossRef]
    [Google Scholar]
  15. Dean A. J. , Bazylinski D. A. . ( 1999; ). Genome analysis of several marine, magnetotactic bacterial strains by pulsed-field gel electrophoresis. . Curr Microbiol 39:, 219–225. [CrossRef] [PubMed]
    [Google Scholar]
  16. Delong E. F. , Frankel R. B. , Bazylinski D. A. . ( 1993; ). Multiple evolutionary origins of magnetotaxis in bacteria. . Science 259:, 803–806. [CrossRef] [PubMed]
    [Google Scholar]
  17. Dubbels B. L. , DiSpirito A. A. , Morton J. D. , Semrau J. D. , Neto J. N. , Bazylinski D. A. . ( 2004; ). Evidence for a copper-dependent iron transport system in the marine, magnetotactic bacterium strain MV-1. . Microbiology 150:, 2931–2945. [CrossRef] [PubMed]
    [Google Scholar]
  18. Fang J. , Findlay R. H. . ( 1996; ). The use of a classic lipid extraction method for simultaneous recovery of organic pollutants and microbial lipids from sediments. . J Microbiol Methods 27:, 63–71. [CrossRef]
    [Google Scholar]
  19. Frankel R. B. , Bazylinski D. A. , Johnson M. S. , Taylor B. L. . ( 1997; ). Magneto-aerotaxis in marine coccoid bacteria. . Biophys J 73:, 994–1000. [CrossRef] [PubMed]
    [Google Scholar]
  20. Herdman M. M. , Janvier M. , Waterbury J. B. , Rippka R. , Stanier R. Y. , Mandel M. . ( 1979; ). Deoxyribonucleic acid base composition of cyanobacteria. . J Gen Microbiol 111:, 63–71.[CrossRef]
    [Google Scholar]
  21. Jackson M. , Solheid P. . ( 2010; ). On the quantitative analysis and evaluation of magnetic hysteresis data. . Geochem Geophys Geosyst 11:, Q04Z15. [CrossRef]
    [Google Scholar]
  22. Jenneman G. E. , Montgomery A. D. , McInerney M. J. . ( 1986; ). Method for detection of microorganisms that produce gaseous nitrogen oxides. . Appl Environ Microbiol 51:, 776–780.[PubMed]
    [Google Scholar]
  23. Kaye J. Z. , Baross J. A. . ( 2004; ). Synchronous effects of temperature, hydrostatic pressure, and salinity on growth, phospholipid profiles, and protein patterns of four Halomonas species isolated from deep-sea hydrothermal-vent and sea surface environments. . Appl Environ Microbiol 70:, 6220–6229. [CrossRef] [PubMed]
    [Google Scholar]
  24. Kimble L. K. , Mandelco L. , Woese C. R. , Madigan M. T. . ( 1995; ). Heliobacterium modesticaldum, sp. nov., a thermophilic heliobacterium of hot springs and volcanic soils. . Arch Microbiol 163:, 259–267. [CrossRef]
    [Google Scholar]
  25. Kodama Y. , Stiknowati L. I. , Ueki A. , Ueki K. , Watanabe K. . ( 2008; ). Thalassospira tepidiphila sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from seawater. . Int J Syst Evol Microbiol 58:, 711–715. [CrossRef] [PubMed]
    [Google Scholar]
  26. Lefèvre C. T. , Frankel R. B. , Pósfai M. , Prozorov T. , Bazylinski D. A. . ( 2011a; ). Isolation of obligately alkaliphilic magnetotactic bacteria from extremely alkaline environments. . Environ Microbiol 13:, 2342–2350. [CrossRef] [PubMed]
    [Google Scholar]
  27. Lefèvre C. T. , Menguy N. , Abreu F. , Lins U. , Pósfai M. , Prozorov T. , Pignol D. , Frankel R. B. , Bazylinski D. A. . ( 2011b; ). A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria. . Science 334:, 1720–1723. [CrossRef] [PubMed]
    [Google Scholar]
  28. Liu C. , Wu Y. , Li L. , Ma Y. , Shao Z. . ( 2007; ). Thalassospira xiamenensis sp. nov. and Thalassospira profundimaris sp. nov.. Int J Syst Evol Microbiol 57:, 316–320. [CrossRef] [PubMed]
    [Google Scholar]
  29. López-López A. , Pujalte M. J. , Benlloch S. , Mata-Roig M. , Rosselló-Mora R. , Garay E. , Rodríguez-Valera F. . ( 2002; ). Thalassospira lucentensis gen. nov., sp. nov., a new marine member of the α-Proteobacteria . . Int J Syst Evol Microbiol 52:, 1277–1283. [CrossRef] [PubMed]
    [Google Scholar]
  30. Lowry O. H. , Rosebrough N. J. , Farr A. L. , Randall R. J. . ( 1951; ). Protein measurement with the Folin phenol reagent. . J Biol Chem 193:, 265–275.[PubMed]
    [Google Scholar]
  31. Lyman J. , Fleming R. H. . ( 1940; ). Composition of seawater. . J Mar Res 3:, 134–146.
    [Google Scholar]
  32. Maratea D. , Blakemore R. P. . ( 1981; ). Aquaspirillum magnetotacticum sp. nov., a magnetic spirillum. . Int J Syst Bacteriol 31:, 452–455. [CrossRef]
    [Google Scholar]
  33. Matsunaga T. , Okamura Y. , Fukuda Y. , Wahyudi A. T. , Murase Y. , Takeyama H. . ( 2005; ). Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1. . DNA Res 12:, 157–166. [CrossRef] [PubMed]
    [Google Scholar]
  34. Meldrum F. C. , Mann S. , Heywood B. R. , Frankel R. B. , Bazylinski D. A. . ( 1993; ). Electron microscopy study of magnetosomes in a cultured coccoid magnetotactic bacterium. . Proc R Soc B Biol Sci 251:, 231–236. [CrossRef]
    [Google Scholar]
  35. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  36. Sakaguchi T. , Burgess J. G. , Matsunaga T. . ( 1993; ). Magnetite formation by a sulphate-reducing bacterium. . Nature 365:, 47–49. [CrossRef]
    [Google Scholar]
  37. Sakaguchi T. , Arakaki A. , Matsunaga T. . ( 2002; ). Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. . Int J Syst Evol Microbiol 52:, 215–221.[PubMed]
    [Google Scholar]
  38. Santoro A. E. , Buchwald C. , McIlvin M. R. , Casciotti K. L. . ( 2011; ). Isotopic signature of N2O produced by marine ammonia-oxidizing archaea. . Science 333:, 1282–1285. [CrossRef] [PubMed]
    [Google Scholar]
  39. Satomi M. , Kimura B. , Hamada T. , Harayama S. , Fujii T. . ( 2002; ). Phylogenetic study of the genus Oceanospirillum based on 16S rRNA and gyrB genes: emended description of the genus Oceanospirillum, description of Pseudospirillum gen. nov., Oceanobacter gen. nov. and Terasakiella gen. nov. and transfer of Oceanospirillum jannaschii and Pseudomonas stanieri to Marinobacterium as Marinobacterium jannaschii comb. nov. and Marinobacterium stanieri comb. nov.. Int J Syst Evol Microbiol 52:, 739–747. [CrossRef] [PubMed]
    [Google Scholar]
  40. Schleifer K.-H. , Schüler D. , Spring S. , Weizenegger M. , Amann R. , Ludwig W. , Köhler M. . ( 1991; ). The genus Magnetospirillum gen. nov. Description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov.. Syst Appl Microbiol 14:, 379–385. [CrossRef]
    [Google Scholar]
  41. Sparks N. H. C. , Mann S. , Bazylinski D. A. , Lovley D. R. , Jannasch H. W. , Frankel R. B. . ( 1990; ). Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium. . Earth Planet Sci Lett 98:, 14–22. [CrossRef]
    [Google Scholar]
  42. Stookey L. L. . ( 1970; ). Ferrozine – a new spectrophotometric reagent for iron. . Anal Chem 42:, 779–781. [CrossRef]
    [Google Scholar]
  43. Tauschel H.-D. . ( 1985; ). ATPase and cytochrome oxidase activities at the polar organelle in swarm cells of Sphaerotilus natans: an ultrastructural study. . Arch Microbiol 141:, 303–308. [CrossRef] [PubMed]
    [Google Scholar]
  44. Thomas-Keprta K. L. , Clemett S. J. , Bazylinski D. A. , Kirschvink J. L. , McKay D. S. , Wentworth S. J. , Vali H. , Gibson E. K. Jr , McKay M. F. , Romanek C. S. . ( 2001; ). Truncated hexa-octahedral magnetite crystals in ALH84001: presumptive biosignatures. . Proc Natl Acad Sci U S A 98:, 2164–2169. [CrossRef] [PubMed]
    [Google Scholar]
  45. Williams T. J. , Lefèvre C. T. , Zhao W. , Beveridge T. J. , Bazylinski D. A. . ( 2012; ). Magnetospira thiophila gen. nov., sp. nov., a marine magnetotactic bacterium that represents a novel lineage within the Rhodospirillaceae (Alphaproteobacteria). . Int J Syst Evol Microbiol 62:, 2443–2450. [CrossRef] [PubMed]
    [Google Scholar]
  46. Yoshinari T. , Hynes R. , Knowles R. . ( 1977; ). Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen-fixation in soil. . Soil Biol Biochem 9:, 177–183. [CrossRef]
    [Google Scholar]
  47. Zhao B. , Wang H. , Li R. , Mao X. . ( 2010; ). Thalassospira xianhensis sp. nov., a polycyclic aromatic hydrocarbon-degrading marine bacterium. . Int J Syst Evol Microbiol 60:, 1125–1129. [CrossRef] [PubMed]
    [Google Scholar]
  48. Zhu K. , Pan H. , Li J. , Yu-Zhang K. , Zhang S. D. , Zhang W. Y. , Zhou K. , Yue H. , Pan Y. . & other authors ( 2010; ). Isolation and characterization of a marine magnetotactic spirillum axenic culture QH-2 from an intertidal zone of the China Sea. . Res Microbiol 161:, 276–283. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.044453-0
Loading
/content/journal/ijsem/10.1099/ijs.0.044453-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error