1887

Abstract

In a study on the diversity of rhizobia isolated from root nodules of , five strains showed identical 16S rRNA gene sequences. They were related most closely to the type strains of , , and , with sequence similarities of 99.6–99.8 %. A polyphasic approach, including 16S–23S intergenic spacer (IGS) RFLP, comparative sequence analysis of 16S rRNA, , and genes, DNA–DNA hybridization and phenotypic tests, clustered the five isolates into a coherent group distinct from all recognized species. Except for strain CCBAU 33446, from which no symbiotic gene was detected, the four remaining strains shared identical and gene sequences and nodulated with In addition, these five strains showed similar but different fingerprints in IGS-RFLP and BOX-repeat-based PCR, indicating that they were not clones of the same strain. They were also distinguished from recognized species by several phenotypic features and fatty acid profiles. Based upon all the results, we suggest that the five strains represent a novel species for which the name sp. nov. is proposed. The type strain is CCBAU 33460 ( = CGMCC 1.12097 = LMG 26793 = HAMBI 3277). The DNA G+C content of the type strain is 59.52 mol% ( ).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.044362-0
2013-06-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/6/2002.html?itemId=/content/journal/ijsem/10.1099/ijs.0.044362-0&mimeType=html&fmt=ahah

References

  1. Chen W. X., Li G. S., Qi Y. L., Wang E. T., Yuan H. L., Li J. L.. ( 1991;). Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus.. Int J Syst Bacteriol 41:, 275–280. [CrossRef]
    [Google Scholar]
  2. Choma A., Komaniecka I.. ( 2002;). Analysis of phospholipids and ornithine-containing lipids from Mesorhizobium spp. . Syst Appl Microbiol 25:, 326–331. [CrossRef][PubMed]
    [Google Scholar]
  3. Choma A., Komaniecka I.. ( 2003;). The polar lipid composition of Mesorhizobium ciceri.. Biochim Biophys Acta 1631:, 188–196. [CrossRef][PubMed]
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  5. Dénarié J., Debellé F., Promé J. C.. ( 1996;). Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. . Annu Rev Biochem 65:, 503–535. [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  7. Ghosh W., Roy P.. ( 2006;). Mesorhizobium thiogangeticum sp. nov., a novel sulfur-oxidizing chemolithoautotroph from rhizosphere soil of an Indian tropical leguminous plant. . Int J Syst Evol Microbiol 56:, 91–97. [CrossRef][PubMed]
    [Google Scholar]
  8. Graham P., Sadowsky M., Keyser H., Barnet Y., Bradley R., Cooper J., De Ley D., Jarvis B., Roslycky E. et al. ( 1991;). Proposed minimal standards for the description of new genera and species of root-and stem-nodulating bacteria. . Int J Syst Evol Microbiol 41:, 582–587.
    [Google Scholar]
  9. Guindon S., Gascuel O.. ( 2003;). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52:, 696–704. [CrossRef][PubMed]
    [Google Scholar]
  10. Guo X. W., Zhang X. X., Zhang Z. M., Li F. D.. ( 1999;). Characterization of Astragalus sinicus rhizobia by restriction fragment length polymorphism analysis of chromosomal and nodulation genes regions. . Curr Microbiol 39:, 358–0364. [CrossRef][PubMed]
    [Google Scholar]
  11. Han T. X., Han L. L., Wu L. J., Chen W. F., Sui X. H., Gu J. G., Wang E. T., Chen W. X.. ( 2008;). Mesorhizobium gobiense sp. nov. and Mesorhizobium tarimense sp. nov., isolated from wild legumes growing in desert soils of Xinjiang, China. . Int J Syst Evol Microbiol 58:, 2610–2618. [CrossRef][PubMed]
    [Google Scholar]
  12. Hurek T., Wagner B., Reinhold-Hurek B.. ( 1997;). Identification of N2-fixing plant- and fungus-associated Azoarcus species by PCR-based genomic fingerprints. . Appl Environ Microbiol 63:, 4331–4339.[PubMed]
    [Google Scholar]
  13. Jarvis B. D. W., Van Berkum P., Chen W. X., Nour S. M., Fernandez M. P., Cleyet-Marel J. C., Gillis M.. ( 1997;). Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov.. Int J Syst Bacteriol 47:, 895–898. [CrossRef]
    [Google Scholar]
  14. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;.
    [Google Scholar]
  15. Kumar S., Nei M., Dudley J., Tamura K.. ( 2008;). MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. . Brief Bioinform 9:, 299–306. [CrossRef][PubMed]
    [Google Scholar]
  16. Laguerre G., Nour S. M., Macheret V., Sanjuan J., Drouin P., Amarger N.. ( 2001;). Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. . Microbiology 147:, 981–993.[PubMed]
    [Google Scholar]
  17. Lee J. S., Shin Y. K., Yoon J. H., Takeuchi M., Pyun Y. R., Park Y. H.. ( 2001;). Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov., and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. . Int J Syst Evol Microbiol 51:, 1491–1498.[PubMed]
    [Google Scholar]
  18. Lin D. H., Gu R. S.. ( 1998;). Chinese Milk Vetch. Fujian. . Fujian Science and Technology Publishing House. I:, 1–5. (in Chinese).
    [Google Scholar]
  19. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  20. Minnikin D. E., Odonnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  21. Murooka Y., Xu Y., Sanada K., Araki M., Morinaga T., Yokota A.. ( 1993;). Formation of root nodules by Rhizobium huakuii biovar renge, bv. nov. on Astragalus sinicus cv. Japan. . Ferment Bioeng 78:, 38–44. [CrossRef]
    [Google Scholar]
  22. Nuswantara S., Fujie M., Yamada T., Malek W., Inaba M., Kaneko Y., Murooka Y.. ( 1999;). Phylogenetic position of Mesorhizobium huakuii subsp. rengei, a symbiont of Astragalus sinicus cv. Japan. . J Biosci Bioeng 87:, 49–55. [CrossRef][PubMed]
    [Google Scholar]
  23. Posada D., Crandall K. A.. ( 1998;). MODELTEST: testing the model of DNA substitution. . Bioinformatics 14:, 817–818. [CrossRef][PubMed]
    [Google Scholar]
  24. Rasolomampianina R., Bailly X., Fetiarison R., Rabevohitra R., Béna G., Ramaroson L., Raherimandimby M., Moulin L., De Lajudie P. et al. ( 2005;). Nitrogen-fixing nodules from rose wood legume trees (Dalbergia spp.) endemic to Madagascar host seven different genera belonging to α- and β-Proteobacteria. . Mol Ecol 14:, 4135–4146. [CrossRef][PubMed]
    [Google Scholar]
  25. Rivas R., Martens M., de Lajudie P., Willems A.. ( 2009;). Multilocus sequence analysis of the genus Bradyrhizobium.. Syst Appl Microbiol 32:, 101–110. [CrossRef][PubMed]
    [Google Scholar]
  26. Sahgal M., Johri B. N.. ( 2006;). Taxonomy of rhizobia: current status. . Curr Sci 90:, 486–487.
    [Google Scholar]
  27. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  28. Sarita S., Sharma P. K., Priefer U. B., Prell J.. ( 2005;). Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. . FEMS Microbiol Ecol 54:, 1–11. [CrossRef][PubMed]
    [Google Scholar]
  29. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  30. Smibert R., Krieg N.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  31. Tan Z. Y., Xu X. D., Wang E. T., Gao J. L., Martinez-Romero E., Chen W. X.. ( 1997;). Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related rhizobia. . Int J Syst Bacteriol 47:, 874–879. [CrossRef][PubMed]
    [Google Scholar]
  32. Terefework Z., Kaijalainen S., Lindström K.. ( 2001;). AFLP fingerprinting as a tool to study the genetic diversity of Rhizobium galegae isolated from Galega orientalis and Galega officinalis. . J Biotechnol 91:, 169–180. [CrossRef][PubMed]
    [Google Scholar]
  33. Tighe S. W., de Lajudie P., Dipietro K., Lindström K., Nick G., Jarvis B. D. W.. ( 2000;). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. . Int J Syst Evol Microbiol 50:, 787–801. [CrossRef][PubMed]
    [Google Scholar]
  34. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  35. Versalovic J., Schneider M., De Bruijn F. J., Lupski J. R.. ( 1994;). Genomic fingerprinting of bacteria using repetitive sequence based PCR (rep-PCR). . Meth Cell Mol Biol 5:, 25–40.
    [Google Scholar]
  36. Vidal C., Chantreuil C., Berge O., Mauré L., Escarré J., Béna G., Brunel B., Cleyet-Marel J. C.. ( 2009;). Mesorhizobium metallidurans sp. nov., a metal-resistant symbiont of Anthyllis vulneraria growing on metallicolous soil in Languedoc, France. . Int J Syst Evol Microbiol 59:, 850–855. [CrossRef][PubMed]
    [Google Scholar]
  37. Vincent J. M.. ( 1970;). Manual for the Practical Study of the Root-Nodule Bacteria, IBP Handbook 15. Oxford:: Blackwell;.
    [Google Scholar]
  38. Vinuesa P., Silva C., Werner D., Martínez-Romero E.. ( 2005;). Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. . Mol Phylogenet Evol 34:, 29–54. [CrossRef][PubMed]
    [Google Scholar]
  39. Wang J. Y., Wang R., Zhang Y. M., Liu H. C., Chen W. F., Wang E. T., Sui X. H., Chen W. X.. ( 2013;). Bradyrhizobium daqingense sp. nov. isolated from nodules of soybean grown in Daqing City of China. . Int J Syst Evol Microbiol 63:, 616–624. [CrossRef][PubMed]
    [Google Scholar]
  40. Wayne L., Brenner D., Colwell R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. ( 1987;). Repor6t of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  41. Zhang X. X., Turner S. L., Guo X. W., Yang H. J., Debellé F., Yang G. P., Dénarié J., Young J. P., Li F. D.. ( 2000;). The common nodulation genes of Astragalus sinicus rhizobia are conserved despite chromosomal diversity. . Appl Environ Microbiol 66:, 2988–2995. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.044362-0
Loading
/content/journal/ijsem/10.1099/ijs.0.044362-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error