1887

Abstract

The yellow-pigmented, non-motile, Gram-negative, strictly aerobic, rod-shaped bacterial strain VI.18 was isolated from the Mediterranean sponge collected off the coast near Sdot Yam, Israel. Results from 16S rRNA gene sequence analysis indicated that the isolate belonged to the family . The highest nucleotide similarity (91.4 %) occurred with A5Q-118. The predominant cellular fatty acids of strain VI.18 were iso-C (56.0 %), iso-Cω9 (22.8 %) and C (7.4 %) and its major respiratory quinone was MK-7. The DNA G+C content was 47.5 mol%. The strain could readily be distinguished from its phylogenetically closest relatives by phenotypic, physiological and chemotaxonomic properties. On the basis of the data from the present polyphasic study, we propose a novel genus and species within the family , with the name gen. nov., sp. nov. Strain VI.18 ( = ATCC BAA-2395  = LMG 26722) is the type strain of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.044263-0
2013-05-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/5/1678.html?itemId=/content/journal/ijsem/10.1099/ijs.0.044263-0&mimeType=html&fmt=ahah

References

  1. Bernardet J.-F., Nakagawa Y., Holmes B.. ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef][PubMed]
    [Google Scholar]
  2. Betrand J. C., Vacelet J.. ( 1971;). L’association entre éponges cornées et bactéries. . C R Hebd Seances Acad Sci 273:, 638–641 (in French).
    [Google Scholar]
  3. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T.. & other authors ( 2009;). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. . Nucleic Acids Res 37:, D141–D145. [CrossRef][PubMed]
    [Google Scholar]
  4. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O.. ( 2010;). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. . Syst Biol 59:, 307–321. [CrossRef][PubMed]
    [Google Scholar]
  5. Kelman D., Kashman Y., Rosenberg E., Ilan M., Ifrach I., Loya Y.. ( 2001;). Antimicrobial activity of the reef sponge Amphimedon viridis from the Red Sea: evidence for selective toxicity. . Aquat Microb Ecol 24:, 9–16. [CrossRef]
    [Google Scholar]
  6. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  7. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  8. Ludwig W., Euzéby J., Whitman W. B.. ( 2010a;). Road map to the phyla Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 4, pp. 1–19. Edited by Krieg N. R., Stanley J. T., Brown D. R., Hedlund B. P., Paster B. J., Ward N. L., Ludwig W., Whitman W. B... New York:: Springer;. [CrossRef]
    [Google Scholar]
  9. Ludwig W., Euzéby J., Whitman W. B.. ( 2010b;). Taxonomic outline of the phyla Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 4, pp. 21–24. Edited by Krieg N. R., Stanley J. T., Brown D. R., Hedlund B. P., Paster B. J., Ward N. L., Ludwig W., Whitman W. B... New York:: Springer;. [CrossRef]
    [Google Scholar]
  10. Marchesi J. R., Sato T., Weightman A. J., Martin T. A., Fry J. C., Hiom S. J., Dymock D., Wade W. G.. ( 1998;). Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. . Appl Environ Microbiol 64:, 795–799.[PubMed]
    [Google Scholar]
  11. MIDI ( 1999;). Sherlock Microbial Identification System Operating Manual, version 3.0. Newark, DE:: MIDI, Inc;.
    [Google Scholar]
  12. Muramatsu Y., Takahashi M., Kaneyasu M., Iino T., Suzuki K., Nakagawa Y.. ( 2010;). Persicobacter psychrovividus sp. nov., isolated from shellfish, and emended descriptions of the genus Persicobacter and Persicobacter diffluens. . Int J Syst Evol Microbiol 60:, 1735–1739. [CrossRef][PubMed]
    [Google Scholar]
  13. Nawrocki E. P., Kolbe D. L., Eddy S. R.. ( 2009;). Infernal 1.0: inference of RNA alignments. . Bioinformatics 25:, 1335–1337. [CrossRef][PubMed]
    [Google Scholar]
  14. Poli A., Romano I., Cordella P., Orlando P., Nicolaus B., Ceschi Berrini C.. ( 2009;). Anoxybacillus thermarum sp. nov., a novel thermophilic bacterium isolated from thermal mud in Euganean hot springs, Abano Terme, Italy. . Extremophiles 13:, 867–874. [CrossRef][PubMed]
    [Google Scholar]
  15. Posada D., Crandall K. A.. ( 1998;). modeltest: testing the model of DNA substitution. . Bioinformatics 14:, 817–818. [CrossRef][PubMed]
    [Google Scholar]
  16. Romano I., Nicolaus B., Lama L., Trabasso D., Caracciolo G., Gambacorta A.. ( 2001;). Accumulation of osmoprotectants and lipid pattern modulation in response to growth conditions by Halomonas pantelleriense. . Syst Appl Microbiol 24:, 342–352. [CrossRef][PubMed]
    [Google Scholar]
  17. Schmitt S., Tsai P., Bell J., Fromont J., Ilan M., Lindquist N., Perez T., Rodrigo A., Schupp P. J.. & other authors ( 2012;). Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. . ISME J 6:, 564–576. [CrossRef][PubMed]
    [Google Scholar]
  18. Swofford D. L.. ( 2003;). paup*. Phylogenetic analysis using parsimony (*and other methods), version 4. . Sunderland, MA:: Sinauer Associates;.
  19. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  20. Taylor M. W., Radax R., Steger D., Wagner M.. ( 2007;). Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. . Microbiol Mol Biol Rev 71:, 295–347. [CrossRef][PubMed]
    [Google Scholar]
  21. Taylor M. W., Hill R. T., Hentschel U.. ( 2011;). Meeting report: 1st international symposium on sponge microbiology. . Mar Biotechnol (NY) 13:, 1057–1061. [CrossRef][PubMed]
    [Google Scholar]
  22. Webster N. S., Taylor M. W., Behnam F., Lücker S., Rattei T., Whalan S., Horn M., Wagner M.. ( 2010;). Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. . Environ Microbiol 12:, 2070–2082.[PubMed]
    [Google Scholar]
  23. Yoon J., Adachi K., Park S., Kasai H., Yokota A.. ( 2011;). Aureibacter tunicatorum gen. nov., sp. nov., a marine bacterium isolated from a coral reef sea squirt, and description of Flammeovirgaceae fam. nov.. Int J Syst Evol Microbiol 61:, 2342–2347. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.044263-0
Loading
/content/journal/ijsem/10.1099/ijs.0.044263-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error