1887

Abstract

A facultatively anaerobic, non-spore-forming, non-motile, catalase- and oxidase-positive, Gram-reaction-negative, coccoid to short rod-shaped strain, designated FLN-7, was isolated from activated sludge of a wastewater biotreatment facility. The strain was able to hydrolyse amide pesticides (e.g. diflubenzuron, propanil, chlorpropham and dimethoate) through amide bond cleavage. Strain FLN-7 grew at 4–42 °C (optimum 28 °C), at pH 5.0–8.0 (optimum pH 7.0) and with 0–5.0 % (w/v) NaCl (optimum 1.0 %). The major respiratory quinone was ubiquinone-10. The major cellular fatty acid was Cω7. The genomic DNA G+C content of strain FLN-7 was 66.4±0.5 mol%. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylcholine and an unidentified glycolipid. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain FLN-7 was a member of the genus and showed highest 16S rRNA gene sequence similarities with JCM 7685 (99.2 %), DSM 413 (97.8 %), CDC G1212 (97.3 %) and THI 011 (97.1 %). Strain FLN-7 showed low DNA–DNA relatedness with KACC 1226136.5±3.4 %), KACC 12251 (30.5±2.6 %), CCUG 46822 (26.2±2.4 %) and KACC 13901 (15.5±0.9 %). Based on the phylogenetic analysis, DNA–DNA hybridization, whole-cell fatty acid composition and biochemical characteristics, strain FLN-7 was clearly distinguished from all recognized species of the genus and should be classified in a novel species, for which the name sp. nov. is proposed. The type strain is FLN-7 ( = KACC 16242  = ACCC 05690).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.044180-0
2013-03-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/3/1132.html?itemId=/content/journal/ijsem/10.1099/ijs.0.044180-0&mimeType=html&fmt=ahah

References

  1. Allen M. B.. ( 1959;). Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. . Arch Mikrobiol 32:, 270–277. [CrossRef][PubMed]
    [Google Scholar]
  2. An D.-S., Lee H.-G., Lee S.-T., Im W.-T.. ( 2009;). Rhodanobacter ginsenosidimutans sp. nov., isolated from soil of a ginseng field in South Korea. . Int J Syst Evol Microbiol 59:, 691–694. [CrossRef][PubMed]
    [Google Scholar]
  3. Berry A., Janssens D., Hümbelin M., Jore J. P. M., Hoste B., Cleenwerck I., Vancanneyt M., Bretzel W., Mayer A. F.. & other authors ( 2003;). Paracoccus zeaxanthinifaciens sp. nov., a zeaxanthin-producing bacterium. . Int J Syst Evol Microbiol 53:, 231–238. [CrossRef][PubMed]
    [Google Scholar]
  4. Buck J. D.. ( 1982;). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. . Appl Environ Microbiol 44:, 992–993.[PubMed]
    [Google Scholar]
  5. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef][PubMed]
    [Google Scholar]
  6. Cowan S. T., Steel K. J.. ( 1965;). Manual for the Identification of Medical Bacteria. London:: Cambridge University Press;.
    [Google Scholar]
  7. Davis D. H., Doudoroff M., Stanier R. Y., Mandel M.. ( 1969;). Proposal to reject the genus Hydrogenomonas: taxonomic implications. . Int J Syst Bacteriol 19:, 375–390. [CrossRef]
    [Google Scholar]
  8. Deng Z.-S., Zhao L.-F., Xu L., Kong Z.-Y., Zhao P., Qin W., Chang J.-L., Wei G.-H.. ( 2011;). Paracoccus sphaerophysae sp. nov., a siderophore-producing, endophytic bacterium isolated from root nodules of Sphaerophysa salsula. . Int J Syst Evol Microbiol 61:, 665–669. [CrossRef][PubMed]
    [Google Scholar]
  9. Denis H., Stephen C.. ( 2004;). Pesticide Residues in Food and Drinking Water: Human Exposure and Risks. New York:: Wiley;.
    [Google Scholar]
  10. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  11. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  12. Frank D. H., Peter G., Nico V. S.. (editors) ( 2003;). Pesticides: Problems, Improvements, Alternatives. NY:: Wiley;.
    [Google Scholar]
  13. Katayama Y., Hiraishi A., Kuraishi H.. ( 1995;). Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus. . Microbiology 141:, 1469–1477. [CrossRef][PubMed]
    [Google Scholar]
  14. Kim B.-Y., Weon H.-Y., Yoo S.-H., Kwon S.-W., Cho Y.-H., Stackebrandt E., Go S.-J.. ( 2006;). Paracoccus homiensis sp. nov., isolated from a sea-sand sample. . Int J Syst Evol Microbiol 56:, 2387–2390. [CrossRef][PubMed]
    [Google Scholar]
  15. Kim Y.-O., Kong H. J., Park S., Kang S.-J., Kim K.-K., Moon D. Y., Oh T.-K., Yoon J.-H.. ( 2010;). Paracoccus fistulariae sp. nov., a lipolytic bacterium isolated from bluespotted cornetfish, Fistularia commersonii. . Int J Syst Evol Microbiol 60:, 2908–2912. [CrossRef][PubMed]
    [Google Scholar]
  16. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  17. La H.-J., Im W.-T., Ten L. N., Kang M. S., Shin D.-Y., Lee S.-T.. ( 2005;). Paracoccus koreensis sp. nov., isolated from anaerobic granules in an upflow anaerobic sludge blanket (UASB) reactor. . Int J Syst Evol Microbiol 55:, 1657–1660. [CrossRef][PubMed]
    [Google Scholar]
  18. Lee J. H., Kim Y. S., Choi T.-J., Lee W. J., Kim Y. T.. ( 2004;). Paracoccus haeundaensis sp. nov., a Gram-negative, halophilic, astaxanthin-producing bacterium. . Int J Syst Evol Microbiol 54:, 1699–1702. [CrossRef][PubMed]
    [Google Scholar]
  19. Lipski A., Reichert K., Reuter B., Spröer C., Altendorf K.. ( 1998;). Identification of bacterial isolates from biofilters as Paracoccus alkenifer sp. nov. and Paracoccus solventivorans with emended description of Paracoccus solventivorans. . Int J Syst Bacteriol 48:, 529–536. [CrossRef][PubMed]
    [Google Scholar]
  20. Liu X.-Y., Wang B.-J., Jiang C.-Y., Liu S.-J.. ( 2006;). Paracoccus sulfuroxidans sp. nov., a sulfur oxidizer from activated sludge. . Int J Syst Evol Microbiol 56:, 2693–2695. [CrossRef][PubMed]
    [Google Scholar]
  21. Liu Z.-P., Wang B.-J., Liu X.-Y., Dai X., Liu Y.-H., Liu S.-J.. ( 2008;). Paracoccus halophilus sp. nov., isolated from marine sediment of the South China Sea, China, and emended description of genus Paracoccus Davis 1969. . Int J Syst Evol Microbiol 58:, 257–261. [CrossRef][PubMed]
    [Google Scholar]
  22. Ludwig W., Mittenhuber G., Friedrich C. G.. ( 1993;). Transfer of Thiosphaera pantotropha to Paracoccus denitrificans. . Int J Syst Bacteriol 43:, 363–367. [CrossRef][PubMed]
    [Google Scholar]
  23. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef][PubMed]
    [Google Scholar]
  24. Minnikin D. E., Collins M. D., Goodfellow M.. ( 1979;). Fatty-acid and polar lipid-composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Microbiol 47:, 87–95. [CrossRef]
    [Google Scholar]
  25. Ohta H., Hattori T.. ( 1983;). Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium. . Antonie van Leeuwenhoek 49:, 429–446.[PubMed]
    [Google Scholar]
  26. Pukall R., Laroche M., Kroppenstedt R. M., Schumann P., Stackebrandt E., Ulber R.. ( 2003;). Paracoccus seriniphilus sp. nov., an l-serine-dehydratase-producing coccus isolated from the marine bryozoan Bugula plumosa. . Int J Syst Evol Microbiol 53:, 443–447. [CrossRef][PubMed]
    [Google Scholar]
  27. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  28. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual,, 3rd Edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  29. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc.;
  30. Siller H., Rainey F. A., Stackebrandt E., Winter J.. ( 1996;). Isolation and characterization of a new gram-negative, acetone-degrading, nitrate-reducing bacterium from soil, Paracoccus solventivorans sp. nov.. Int J Syst Bacteriol 46:, 1125–1130. [CrossRef][PubMed]
    [Google Scholar]
  31. Suzuki M., Nakagawa Y., Harayama S., Yamamoto S.. ( 2001;). Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov.. Int J Syst Evol Microbiol 51:, 1639–1652. [CrossRef][PubMed]
    [Google Scholar]
  32. Tamaoka J., Katayama-Fujimura Y., Kuraishi H.. ( 1983;). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. . J Appl Bacteriol 54:, 31–36. [CrossRef]
    [Google Scholar]
  33. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  34. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  35. Tomlin C. D. S.. (editor) ( 2007;). The Pesticide Manual, , 14th edn.. UK:: British Crop Protection Council;.
    [Google Scholar]
  36. Tsubokura A., Yoneda H., Mizuta H.. ( 1999;). Paracoccus carotinifaciens sp. nov., a new aerobic gram-negative astaxanthin-producing bacterium. . Int J Syst Bacteriol 49:, 277–282. [CrossRef][PubMed]
    [Google Scholar]
  37. Urakami T., Araki H., Oyanagi H., Suzuki K., Komagata K.. ( 1990;). Paracoccus aminophilus sp. nov. and Paracoccus aminovorans sp. nov., which utilize N,N-dimethylformamide. . Int J Syst Bacteriol 40:, 287–291. [CrossRef][PubMed]
    [Google Scholar]
  38. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  39. Zhang J., Yin J.-G., Hang B.-J., Cai S., He J., Zhou S.-G., Li S.-P.. ( 2012;). Cloning of a novel arylamidase gene from Paracoccus sp. strain FLN-7 that hydrolyzes amide pesticides. . Appl Environ Microbiol 78:, 4848–4855. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.044180-0
Loading
/content/journal/ijsem/10.1099/ijs.0.044180-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error