1887

Abstract

Two yellow-pigmented, Gram-reaction-negative strains, designated 01SU5-P and 03SU3-P, were isolated from the freshwater of Woopo wetland, Republic of Korea. Both strains were aerobic, non-motile and catalase-negative. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the two isolates belong to the genus , showing the highest level of sequence similarity with respect to W-50 (95.4–95.7 %). The two novel isolates shared 99.4 % sequence similarity. DNA–DNA hybridization between the isolates and the type strain of clearly suggested that strains 01SU5-P and 03SU3-P represent two separate novel species in the genus . The two strains displayed different fingerprints after PCR analysis using the repetitive primers BOX, ERIC and REP. Several phenotypic characteristics served to differentiate these two isolates from recognized members of the genus . The data from the polyphasic study presented here indicated that strains 01SU5-P and 03SU3-P should be classified as representing novel species in the genus , for which the names sp. nov. and sp. nov., respectively, are proposed. The type strain of sp. nov. is 01SU5-P ( = KCTC 23326 = JCM 17509) and the type strain of sp. nov. is 03SU3-P ( = KCTC 23340 = JCM 17547).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.044057-0
2013-04-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/4/1297.html?itemId=/content/journal/ijsem/10.1099/ijs.0.044057-0&mimeType=html&fmt=ahah

References

  1. Barrow G. I. , Feltham R. K. A. . (editors) ( 1993; ). Cowan and Steel’s Manual for the Identification of Medical Bacteria, , 3rd edn.. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  2. Bauer A. W. , Kirby W. M. M. , Sherris J. C. , Turck M. . ( 1966; ). Antibiotic susceptibility testing by a standardized single disk method. . Am J Clin Pathol 45:, 493–496.[PubMed]
    [Google Scholar]
  3. Choi J. H. , Kim M. S. , Jung M. J. , Roh S. W. , Shin K. S. , Bae J. W. . ( 2010; ). Sphingopyxis soli sp. nov., isolated from landfill soil. . Int J Syst Evol Microbiol 60:, 1682–1686. [CrossRef] [PubMed]
    [Google Scholar]
  4. Christensen W. B. . ( 1946; ). Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. . J Bacteriol 52:, 461–466.[PubMed]
    [Google Scholar]
  5. Chun, J. (1995). Computer-assisted classification and identification of actinomycetes. PhD thesis, University of Newcastle, Newcastle upon Tyne, UK.
  6. Chun J. , Goodfellow M. . ( 1995; ). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. . Int J Syst Bacteriol 45:, 240–245. [CrossRef] [PubMed]
    [Google Scholar]
  7. CLSI (2009). Performance standards for antimicrobial susceptibility testing. Approved Standard, 19th Informational Supplement M100-S19 (ISBN 1-56238-690-5). Wayne, PA: Clinical and Laboratory Standards Institute.
  8. Collins M. D. . ( 1994; ). Isoprenoid quinones. . In Chemical Methods in Prokaryotic Systematics, pp. 265–309. Edited by Goodfellow M. , O’Donnell A. G. . . Chichester:: Wiley;.
    [Google Scholar]
  9. Embley T. M. , Wait R. . ( 1994; ). Structural lipids of eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 121–161. Edited by Goodfellow M. , O’Donell A. G. . . Chichester:: Wiley;.
    [Google Scholar]
  10. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  11. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  12. Fitch W. M. . ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  13. Godoy F. , Vancanneyt M. , Martínez M. , Steinbüchel A. , Swings J. , Rehm B. H. A. . ( 2003; ). Sphingopyxis chilensis sp. nov., a chlorophenol-degrading bacterium that accumulates polyhydroxyalkanoate, and transfer of Sphingomonas alaskensis to Sphingopyxis alaskensis comb. nov.. Int J Syst Evol Microbiol 53:, 473–477. [CrossRef] [PubMed]
    [Google Scholar]
  14. Gordon R. E. , Mihm J. M. . ( 1962; ). Identification of Nocardia caviae (Erikson) nov. comb. . Ann N Y Acad Sci 98:, 628–636. [CrossRef]
    [Google Scholar]
  15. Hanker J. S. , Rabin A. N. . ( 1975; ). Color reaction streak test for catalase-positive microorganisms. . J Clin Microbiol 2:, 463–464.[PubMed]
    [Google Scholar]
  16. Jukes T. H. , Cantor C. R. . ( 1969; ). Evolution of protein molecules. . In Mammalian Protein Metabolism, pp. 21–132. Edited by Munro H. N. . . New York:: Academic Press;.
    [Google Scholar]
  17. Kämpfer P. , Witzenberger R. , Denner E. B. M. , Busse H.-J. , Neef A. . ( 2002; ). Sphingopyxis witflariensis sp. nov., isolated from activated sludge. . Int J Syst Evol Microbiol 52:, 2029–2034. [PubMed] [CrossRef]
    [Google Scholar]
  18. Kim M. K. , Im W. T. , Ohta H. , Lee M. , Lee S. T. . ( 2005; ). Sphingopyxis granuli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria . . J Microbiol 43:, 152–157.[PubMed]
    [Google Scholar]
  19. Kim B. S. , Lim Y. W. , Chun J. . ( 2008; ). Sphingopyxis marina sp. nov. and Sphingopyxis litoris sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 58:, 2415–2419. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. et al. ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  21. Lee J. S. , Shin Y. K. , Yoon J. H. , Takeuchi M. , Pyun Y. R. , Park Y. H. . ( 2001; ). Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov., and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. . Int J Syst Evol Microbiol 51:, 1491–1498.[PubMed]
    [Google Scholar]
  22. Lee J.-S. , Lee K. C. , Pyun Y.-R. , Bae K. S. . ( 2003; ). Arthrobacter koreensis sp. nov., a novel alkalitolerant bacterium from soil. . Int J Syst Evol Microbiol 53:, 1277–1280. [CrossRef] [PubMed]
    [Google Scholar]
  23. Lee H.-W. , Ten I. L. , Jung H.-M. , Liu Q.-M. , Im W.-T. , Lee S.-T. . ( 2008a; ). Sphingopyxis panaciterrae sp. nov., isolated from soil from ginseng field. . J Microbiol Biotechnol 18:, 1011–1015.[PubMed]
    [Google Scholar]
  24. Lee M. , Ten L. N. , Lee H. W. , Oh H. W. , Im W. T. , Lee S. T. . ( 2008b; ). Sphingopyxis ginsengisoli sp. nov., isolated from soil of a ginseng field in South Korea. . Int J Syst Evol Microbiol 58:, 2342–2347. [PubMed] [CrossRef]
    [Google Scholar]
  25. Louws F. J. , Fulbright D. W. , Stephens C. T. , de Bruijn F. J. . ( 1994; ). Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. . Appl Environ Microbiol 60:, 2286–2295. [PubMed]
    [Google Scholar]
  26. Marmur J. , Doty P. . ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef] [PubMed]
    [Google Scholar]
  27. Minnikin D. E. , Patel P. V. , Alshamaony L. , Goodfellow M. . ( 1977; ). Polar lipid composition in the classification of Nocardia and related bacteria. . Int J Syst Bacteriol 27:, 104–117. [CrossRef]
    [Google Scholar]
  28. Minnikin D. E. , O’Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  29. Powers E. M. . ( 1995; ). Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. . Appl Environ Microbiol 61:, 3756–3758.[PubMed]
    [Google Scholar]
  30. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  31. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  32. Scherer P. , Kneifel H. . ( 1983; ). Distribution of polyamines in methanogenic bacteria. . J Bacteriol 154:, 1315–1322.[PubMed]
    [Google Scholar]
  33. Sharma P. , Verma M. , Bala K. , Nigam A. , Lal R. . ( 2010; ). Sphingopyxis ummariensis sp. nov., isolated from a hexachlorocyclohexane dump site. . Int J Syst Evol Microbiol 60:, 780–784. [CrossRef] [PubMed]
    [Google Scholar]
  34. Smibert R. M. , Krieg N. R. . ( 1994; ). General characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gebhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  35. Srinivasan S. , Kim M. K. , Sathiyaraj G. , Veena V. , Mahalakshmi M. , Kalaiselvi S. , Kim Y. J. , Yang D. C. . ( 2010; ). Sphingopyxis panaciterrulae sp. nov., isolated from soil of a ginseng field. . Int J Syst Evol Microbiol 60:, 2358–2363. [CrossRef] [PubMed]
    [Google Scholar]
  36. Staley J. T. . ( 1968; ). Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. . J Bacteriol 95:, 1921–1942.[PubMed]
    [Google Scholar]
  37. Swofford, D. L. (1998). Phylogenetic analysis using parsimony (paup), version 4. Sunderland, MA: Sinauer Associates.
  38. Takeuchi M. , Kawai F. , Shimada Y. , Yokota A. . ( 1993; ). Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov.. Syst Appl Microbiol 16:, 227–238. [CrossRef]
    [Google Scholar]
  39. Takeuchi M. , Hamana K. , Hiraishi A. . ( 2001; ). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. . Int J Syst Evol Microbiol 51:, 1405–1417.[PubMed]
    [Google Scholar]
  40. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  41. Tindall B. J. , Sikorski J. , Smibert R. A. , Krieg N. R. . ( 2007; ). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, pp. 330–393. Edited by Reddy C. A. , Beveridge T. J. , Breznak J. A. , Marzluf G. , Schmidt T. M. , Snyder L. R. . . Washington, DC:: American Society for Microbiology Press;.
    [Google Scholar]
  42. Vancanneyt M. , Schut F. , Snauwaert C. , Goris J. , Swings J. , Gottschal J. C. . ( 2001; ). Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment. . Int J Syst Evol Microbiol 51:, 73–79.[PubMed]
    [Google Scholar]
  43. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. et al. ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  44. Wi S. J. , Kim W. T. , Park K. Y. . ( 2006; ). Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. . Plant Cell Rep 25:, 1111–1121. [CrossRef] [PubMed]
    [Google Scholar]
  45. Yabuuchi E. , Yano I. , Oyaizu H. , Hashimoto Y. , Ezaki T. , Yamamoto H. . ( 1990; ). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . . Microbiol Immunol 34:, 99–119.[PubMed] [CrossRef]
    [Google Scholar]
  46. Yamaguchi S. , Yokoe M. . ( 2000; ). A novel protein-deamidating enzyme from Chryseobacterium proteolyticum sp. nov., a newly isolated bacterium from soil. . Appl Environ Microbiol 66:, 3337–3343. [CrossRef] [PubMed]
    [Google Scholar]
  47. Yoon J. H. , Oh T. K. . ( 2005; ). Sphingopyxis flavimaris sp. nov., isolated from sea water of the Yellow Sea in Korea. . Int J Syst Evol Microbiol 55:, 369–373. [CrossRef] [PubMed]
    [Google Scholar]
  48. Yoon J. H. , Lee C. H. , Yeo S. H. , Oh T. K. . ( 2005; ). Sphingopyxis baekryungensis sp. nov., an orange-pigmented bacterium isolated from sea water of the Yellow Sea in Korea. . Int J Syst Evol Microbiol 55:, 1223–1227. [CrossRef] [PubMed]
    [Google Scholar]
  49. Zhang D. C. , Liu H. C. , Xin Y. H. , Zhou Y. G. , Schinner F. , Margesin R. . ( 2010; ). Sphingopyxis bauzanensis sp. nov., a psychrophilic bacterium isolated from soil. . Int J Syst Evol Microbiol 60:, 2618–2622. [PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.044057-0
Loading
/content/journal/ijsem/10.1099/ijs.0.044057-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error