1887

Abstract

A novel anaerobic thermophilic sulfate-reducing bacterium designated strain LINDBHT1 was isolated from an anaerobic digester treating abattoir wastewaters in Tunisia. Strain LINDBHT1 grew at temperatures between 50 and 65 °C (optimum 55–60 °C), and at pH between 5.9 and 9.2 (optimum pH 6.0–6.8). Strain LINDBHT1 required salt for growth (1–40 g NaCl l), with an optimum of 20–30 g l. In the presence of sulfate as terminal electron acceptor, strain LINDBHT1 used HCO, propanol, butanol and ethanol as carbon and energy sources but fumarate, formate, lactate and pyruvate were not utilized. Butanol was converted to butyrate, while propanol and ethanol were oxidized to propionate and acetate, respectively. Sulfate, sulfite and thiosulfate were utilized as terminal electron acceptors but elemental sulfur, iron (III), fumarate, nitrate and nitrite were not used. The G+C content of the genomic DNA was 44.4 mol%. Phylogenetic analysis of the small-subunit rRNA gene sequence indicated that strain LINDBHT1 was affiliated to the genus with the type strains of and as its closest phylogenetic relatives (about 89 % similarity). This strain represents a novel species of the genus , sp. nov.; the type strain is LINDBHT1 ( = DSM 23769 = JCM 17209).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.043893-0
2013-06-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/6/2082.html?itemId=/content/journal/ijsem/10.1099/ijs.0.043893-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. ( 1990 ). Basic local alignment search tool. . J Mol Biol 215, 403410.[PubMed] [CrossRef]
    [Google Scholar]
  2. Barton L. L., Fauque G. D. ( 2009 ). Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. . In Advances in Applied Microbiology, vol. 68, pp. 4198. Edited by Laskin A. I., Sariaslani S., Gadd G. M. . San Diego:: Academic Press;. [View Article]
    [Google Scholar]
  3. Ben Dhia Thabet O. B., Fardeau M.-L., Joulian C., Thomas P., Hamdi M., Garcia J.-L., Ollivier B. ( 2004 ). Clostridium tunisiense sp. nov., a new proteolytic, sulfur-reducing bacterium isolated from an olive mill wastewater contaminated by phosphogypse. . Anaerobe 10, 185190. [View Article] [PubMed]
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. ( 1977 ). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81, 461466. [View Article] [PubMed]
    [Google Scholar]
  5. Cord-Ruwisch R. ( 1985 ). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacterial. . J Microbiol Methods 4, 3336. [View Article]
    [Google Scholar]
  6. Fardeau M.-L., Ollivier B., Patel B. K. C., Magot M., Thomas P., Rimbault A., Rocchiccioli F., Garcia J.-L. ( 1997 ). Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. . Int J Syst Bacteriol 47, 10131019. [View Article] [PubMed]
    [Google Scholar]
  7. Fardeau M.-L., Magot M., Patel B. K. C., Thomas P., Garcia J.-L., Ollivier B. ( 2000 ). Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from oilfield water. . Int J Syst Evol Microbiol 50, 21412149. [View Article] [PubMed]
    [Google Scholar]
  8. Fauque G. D. ( 1995 ). Ecology of sulfate-reducing bacteria. . In Biotechnology Handbooks Sulfate-Reducing Bacteria, vol. 8, pp. 217241. Edited by Barton L. L. . New York:: Plenum Press;. [CrossRef]
    [Google Scholar]
  9. Fauque G. D., Barton L. L. ( 2012 ). Haemoproteins in dissimilatory sulphate- and sulphur-reducing Prokaryotes . . In Advances in Microbial Physiology, vol. 60, pp. 190. Edited by Poole R. K. . Burlington:: Academic Press;.
    [Google Scholar]
  10. Fauque G., Ollivier B. ( 2004 ). Anaerobes: the sulfate-reducing bacteria as an example of metabolic diversity. . In Microbial Diversity and Bioprospecting, pp. 169176. Edited by Bull A. T. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  11. Fauque G., LeGall J., Barton L. L. ( 1991 ). Sulfate-reducing and sulfur-reducing bacteria. . In Variations in Autotrophic Life, pp. 271337. Edited by Shively J. M., Barton L. L. . London:: Academic Press Limited;.
    [Google Scholar]
  12. Felsenstein J. ( 1985 ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39, 783791. [View Article]
    [Google Scholar]
  13. Gannoun H., Bouallagui H., Okbi A., Sayadi S., Hamdi M. ( 2009 ). Mesophilic and thermophilic anaerobic digestion of biologically pretreated abattoir wastewaters in an upflow anaerobic filter. . J Hazard Mater 170, 263271. [View Article] [PubMed]
    [Google Scholar]
  14. Hall T. A. ( 1999 ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41, 9598.
    [Google Scholar]
  15. Hungate R. E. ( 1969 ). A roll tube method for cultivation of strict anaerobes. . Methods Microbiol 3B, 117132. [View Article]
    [Google Scholar]
  16. Jukes T. H., Cantor C. R. ( 1969 ). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21132. Edited by Munro H. N. . New York:: Academic Press;.
    [Google Scholar]
  17. Kaksonen A. H., Spring S., Schumann P., Kroppenstedt R. M., Puhakka J. A. ( 2007a ). Desulfovirgula thermocuniculi gen. nov., sp. nov., a thermophilic sulfate-reducer isolated from a geothermal underground mine in Japan. . Int J Syst Evol Microbiol 57, 98102. [View Article] [PubMed]
    [Google Scholar]
  18. Kaksonen A. H., Spring S., Schumann P., Kroppenstedt R. M., Puhakka J. A. ( 2007b ). Desulfurispora thermophila gen. nov., sp. nov., a thermophilic, spore-forming sulfate-reducer isolated from a sulfidogenic fluidized-bed reactor. . Int J Syst Evol Microbiol 57, 10891094. [View Article] [PubMed]
    [Google Scholar]
  19. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E. ( 1988 ). Fatty acids, antibiotic resistance, and desoxyribonucleic acid homology groups of Bradyrhizobium japonicum . . Int J Syst Bacteriol 38, 358361. [View Article]
    [Google Scholar]
  20. LeGall J., Fauque G. ( 1988 ). Dissimilatory reduction of sulfur compounds. . In Biology of Anaerobic Microorganisms, pp. 587639. Edited by Zehnder A. J. B. . New York:: John Wiley & Sons Inc;.
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. B. ( 1989 ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39, 159167. [View Article]
    [Google Scholar]
  22. Miller L. T. ( 1982 ). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16, 584586.[PubMed]
    [Google Scholar]
  23. Miller T. L., Wolin M. J. ( 1974 ). A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. . Appl Microbiol 27, 985987.[PubMed]
    [Google Scholar]
  24. Muyzer G., Stams A. J. M. ( 2008 ). The ecology and biotechnology of sulphate-reducing bacteria. . Nat Rev Microbiol 6, 441454.[PubMed]
    [Google Scholar]
  25. Ogg C. D., Patel B. K. ( 2011 ). Desulfotomaculum varum sp. nov., a moderate thermophilic sulfate-reducing bacterium isolated from a microbial mat colonizing a Great Artesian Basin bore well runoff channel. . 3 Biotech 1, 139149. [View Article] [PubMed]
    [Google Scholar]
  26. Ollivier B., Cayol J.-L., Fauque G. ( 2007 ). Sulphate-reducing bacteria from oil fields environments and deep-sea hydrothermal vents. . In Sulphate-Reducing Bacteria: Environmental and Engineered System, pp. 305328. Edited by Barton L. L., Hamilton W. A. . Cambridge:: Cambridge University Press;. [View Article]
    [Google Scholar]
  27. Pikuta E., Lysenko A., Suzina N., Osipov G., Kuznetsov B., Tourova T., Akimenko V., Laurinavichius K. ( 2000 ). Desulfotomaculum alkaliphilum sp. nov., a new alkaliphilic, moderately thermophilic, sulfate-reducing bacterium. . Int J Syst Evol Microbiol 50, 2533. [View Article] [PubMed]
    [Google Scholar]
  28. Postgate J. R. ( 1959 ). A diagnostic reaction of Desulphovibrio desulphuricans . . Nature 183, 481482. [View Article] [PubMed]
    [Google Scholar]
  29. Rabus R., Hansen T. A., Widdel F. ( 2006 ). Dissimilatory sulfate- and sulfur-reducing prokaryotes. . In The Prokaryotes, vol. 2, pp. 659768. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. . Berlin:: Springer;. [View Article]
    [Google Scholar]
  30. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  31. Sass H., Overmann J., Rütters H., Babenzien H.-D., Cypionka H. ( 2004 ). Desulfosporomusa polytropa gen. nov., sp. nov., a novel sulfate-reducing bacterium from sediments of an oligotrophic lake. . Arch Microbiol 182, 204211. [View Article] [PubMed]
    [Google Scholar]
  32. Spring S., Rosenzweig F. ( 2006 ). The genera Desulfitobacterium and Desulfosporosinus: taxonomy. . In The Prokaryotes, , 3rd edn., vol. 4, pp. 771786. Edited by Dworkin M., Fallow S., Rosenberg E., Schleifer K.-H., Stackebranbt E. . New York:: Springer;. [View Article]
    [Google Scholar]
  33. Stackebrandt E., Sproer C., Rainey F. A., Burghardt J., Päuker O., Hippe H. ( 1997 ). Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov.. Int J Syst Bacteriol 47, 11341139. [View Article] [PubMed]
    [Google Scholar]
  34. Tardy-Jacquenod C., Magot M., Patel B. K. C., Matheron R., Caumette P. ( 1998 ). Desulfotomaculum halophilum sp. nov., a halophilic sulfate-reducing bacterium isolated from oil production facilities. . Int J Syst Bacteriol 48, 333338. [View Article] [PubMed]
    [Google Scholar]
  35. Widdel F. ( 2006 ). The genus Desulfotomaculum. . In The Prokaryotes, , 3rd edn., vol. 4, pp. 787794. Edited by Dworkin M., Fallow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. . New York:: Springer;. [View Article]
    [Google Scholar]
  36. Widdel F., Hansen T. A. ( 1992 ). The dissimilatory sulfate and sulfur-reducing bacteria. . In The Prokaryotes, , 2nd edn., vol. 1, pp. 583624. Edited by Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K. H. . New York:: Springer;.
    [Google Scholar]
  37. Widdel F., Pfennig N. ( 1981 ). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. . Arch Microbiol 129, 395400. [View Article] [PubMed]
    [Google Scholar]
  38. Winker S., Woese C. R. ( 1991 ). A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. . Syst Appl Microbiol 14, 305310. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.043893-0
Loading
/content/journal/ijsem/10.1099/ijs.0.043893-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error