1887

Abstract

A sulfate-reducing bacterium, designated JHA1, was isolated from a permanently cold marine sediment sampled in an Artic fjord on the north-west coast of Svalbard. The isolate was originally enriched at 4 °C in a highly diluted liquid culture amended with hydrogen and sulfate. Strain JHA1 was a psychrophile, growing fastest between 14 and 16 °C and not growing above 20 °C. Fastest growth was found at neutral pH (pH 7.2–7.4) and at marine concentrations of NaCl (20–30 g l). Phylogenetic analysis of 16S rRNA gene sequences revealed that strain JHA1 was a member of the family in the . The isolate shared 99 % 16S rRNA gene sequence similarity with an environmental sequence obtained from permanently cold Antarctic sediment. The closest recognized relatives were DSM 3384 and DSM 7467 (both <95 % sequence similarity). In contrast to its closest phylogenetic relatives, strain JHA1 grew chemolithoautotrophically with hydrogen as an electron donor. CO dehydrogenase activity indicated the operation of the reductive acetyl-CoA pathway for inorganic carbon assimilation. Beside differences in physiology and morphology, strain JHA1 could be distinguished chemotaxonomically from the genus by the absence of the cellular fatty acid C 10-methyl. Phylogenetic differentiation from other genera was further supported by DsrAB and AprBA sequence analysis. Based on the described phylogenetic and phenotypic differences between strain JHA1 and its closest relatives, the establishment of a novel genus and a novel species, gen. nov., sp. nov. is proposed. The type strain is JHA1 ( = DSM 21856  = JCM 16085).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.043703-0
2013-03-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/3/959.html?itemId=/content/journal/ijsem/10.1099/ijs.0.043703-0&mimeType=html&fmt=ahah

References

  1. Bak F. , Widdel F. . ( 1986; ). Anaerobic degradation of phenol and phenol derivatives by Desulfobacterium phenolicum sp. nov.. Arch Microbiol 146:, 177–180. [CrossRef]
    [Google Scholar]
  2. Bradford M. M. . ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. . Anal Biochem 72:, 248–254. [CrossRef] [PubMed]
    [Google Scholar]
  3. Cord-Ruwisch R. . ( 1985; ). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulphate-reducing bacteria. . J Microbiol Methods 4:, 33–36. [CrossRef]
    [Google Scholar]
  4. Finke N. , Jørgensen B. B. . ( 2008; ). Response of fermentation and sulfate reduction to experimental temperature changes in temperate and Arctic marine sediments. . ISME J 2:, 815–829. [CrossRef] [PubMed]
    [Google Scholar]
  5. Finster K. , Liesack W. , Tindall B. J. . ( 1997; ). Desulfospira joergensenii, gen. nov, sp. nov., a new sulfate-reducing bacterium isolated from marine surface sediment. . Syst Appl Microbiol 20:, 201–208. [CrossRef]
    [Google Scholar]
  6. Galushko A. S. , Schink B. . ( 2000; ). Oxidation of acetate through reactions of the citric acid cycle by Geobacter sulfurreducens in pure culture and in syntrophic coculture. . Arch Microbiol 174:, 314–321. [CrossRef] [PubMed]
    [Google Scholar]
  7. Jørgensen B. B. . ( 1982; ). Mineralization of organic matter in the sea bed – the role of sulphate reduction. . Nature 296:, 643–645. [CrossRef]
    [Google Scholar]
  8. Knoblauch C. , Jørgensen B. B. . ( 1999; ). Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments. . Environ Microbiol 1:, 457–467. [CrossRef] [PubMed]
    [Google Scholar]
  9. Knoblauch C. , Sahm K. , Jørgensen B. B. . ( 1999; ). Psychrophilic sulfate-reducing bacteria isolated from permanently cold arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov.. Int J Syst Bacteriol 49:, 1631–1643. [CrossRef] [PubMed]
    [Google Scholar]
  10. Könneke M. . ( 2001; ). Untersuchung der zellularen Fettsäuren von sulfatreduzierenden Bakterien aus kalten, marinen Sedimenten. Dissertation, Universität Bremen, Bremen, Germany..
    [Google Scholar]
  11. Könneke M. , Widdel F. . ( 2003; ). Effect of growth temperature on cellular fatty acids in sulphate-reducing bacteria. . Environ Microbiol 5:, 1064–1070. [CrossRef] [PubMed]
    [Google Scholar]
  12. Konstantinidis K. T. , Tiedje J. M. . ( 2007; ). Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. . Curr Opin Microbiol 10:, 504–509. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kuever J. , Könneke M. , Galushko A. , Drzyzga O. . ( 2001; ). Reclassification of Desulfobacterium phenolicum as Desulfobacula phenolica comb. nov. and description of strain SaxT as Desulfotignum balticum gen. nov., sp. nov.. Int J Syst Evol Microbiol 51:, 171–177.[PubMed]
    [Google Scholar]
  14. Loy A. , Küsel K. , Lehner A. , Drake H. L. , Wagner M. . ( 2004; ). Microarray and functional gene analyses of sulfate-reducing prokaryotes in low-sulfate, acidic fens reveal cooccurrence of recognized genera and novel lineages. . Appl Environ Microbiol 70:, 6998–7009. [CrossRef] [PubMed]
    [Google Scholar]
  15. Meyer B. , Kuever J. . ( 2007; ). Phylogeny of the alpha and beta subunits of the dissimilatory adenosine-5′-phosphosulfate (APS) reductase from sulfate-reducing prokaryotes–origin and evolution of the dissimilatory sulfate-reduction pathway. . Microbiology 153:, 2026–2044. [CrossRef] [PubMed]
    [Google Scholar]
  16. Murray R. G. E. , Doetsch R. N. , Robinow F. . ( 1994; ). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  17. Purdy K. J. , Nedwell D. B. , Embley T. M. . ( 2003; ). Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments. . Appl Environ Microbiol 69:, 3181–3191. [CrossRef] [PubMed]
    [Google Scholar]
  18. Rabus R. , Nordhaus R. , Ludwig W. , Widdel F. . ( 1993; ). Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. . Appl Environ Microbiol 59:, 1444–1451.[PubMed]
    [Google Scholar]
  19. Rabus R. , Hansen T. , Widdel F. . ( 2000; ). Dissimilatory sulfate- and sulfur-reducing prokaryotes. . In The Prokaryotes, an Electronic Resource for Microbiological Community. Edited by Dworkin M. , Falkow S. , Rosenberg E. , Schleifer K.-H. , Stackebrandt E. . . Heidelberg:: Springer Science Online;.
    [Google Scholar]
  20. Ravenschlag K. , Sahm K. , Pernthaler J. , Amann R. . ( 1999; ). High bacterial diversity in permanently cold marine sediments. . Appl Environ Microbiol 65:, 3982–3989.[PubMed]
    [Google Scholar]
  21. Ravenschlag K. , Sahm K. , Knoblauch C. , Jørgensen B. B. , Amann R. . ( 2000; ). Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine arctic sediments. . Appl Environ Microbiol 66:, 3592–3602. [CrossRef] [PubMed]
    [Google Scholar]
  22. Ravenschlag K. , Sahm K. , Amann R. . ( 2001; ). Quantitative molecular analysis of the microbial community in marine arctic sediments (Svalbard). . Appl Environ Microbiol 67:, 387–395. [CrossRef] [PubMed]
    [Google Scholar]
  23. Sagemann J. , Jørgensen B. B. , Greeff O. . ( 1998; ). Temperature dependence and rates of sulfate reduction in cold sediments of Svalbard, Arctic Ocean. . Geomicrobiol J 15:, 85–100. [CrossRef]
    [Google Scholar]
  24. Sahm K. , Knoblauch C. , Amann R. . ( 1999; ). Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing isolates in marine Arctic sediments. . Appl Environ Microbiol 65:, 3976–3981.[PubMed]
    [Google Scholar]
  25. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  26. Widdel F. , Bak F. . ( 1992; ). Gram-negative mesophilic sulfate-reducing bacteria. . In The Prokaryotes. A. Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Application, pp. 3352–3378. Edited by Ballows A. , Trüper H. G. , Dworkin M. , Harder W. , Schleifer K. H. . . New York:: Springer Verlag;.
    [Google Scholar]
  27. Wiegel J. . ( 1990; ). Temperature spans for growth: hypothesis and discussion. . FEMS Microbiol Lett 75:, 155–169.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.043703-0
Loading
/content/journal/ijsem/10.1099/ijs.0.043703-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error