1887

Abstract

A novel exopolysaccharide-producing bacterium, designated strain k53, was isolated from sediment from the Arabia Sea, Indian Ocean. The strain was Gram-negative, motile, strictly aerobic, oxidase-positive and catalase-positive, and required Na for growth. Its major isoprenoid quinone was ubiquinone-8 (Q-8), and its cellular fatty acid profile mainly consisted of Cω7, C and Cω7. The DNA G+C content was 43 mol%. 16S rRNA gene sequence analysis suggested that strain k53 is a member of the genus . Strain k53exhibited close phylogenetic affinity to LMEB 39 (98.0% 16S rRNA gene sequence similarity) and HJ51 (97.3 %).The DNA–DNA reassociation values between strain k53 and JCM 15903 and LMG 24469 were 17 % and 12 %, respectively. Owing to the significant differences in phenotypic and chemotaxonomic characteristics, and phylogenetic analysis based on the 16S rRNA gene sequence and DNA–DNA relatedness data, the isolate merits classification as a representative of a novel species, for which the name is proposed. The type strain of this species is k53 ( = JCM 17292 = NCIMB 14688).

Funding
This study was supported by the:
  • , Ministry of Education, Science, Sports and Culture, Japan , (Award 22241001 and 19253006)

Erratum

This article contains a correction applying to the following content:
sp. nov., a marine polysaccharide-producing bacterium
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.043604-0
2013-05-01
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/5/1805.html?itemId=/content/journal/ijsem/10.1099/ijs.0.043604-0&mimeType=html&fmt=ahah

References

  1. Barrow G. I., Feltham R. K. A. (editors) ( 1993 ). Cowan and Steel’s Manual for the Identification of Medical Bacteria, , 3rd edn.. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  2. Baumann L., Baumann P., Mandel M., Allen R. D. ( 1972 ). Taxonomy of aerobic marine eubacteria. . J Bacteriol 110, 402429.[PubMed]
    [Google Scholar]
  3. Bowman J. P., McMeekin T. A. ( 2005 ). Genus Xl. Pseudoalteromonas Gauthier, Gauthier and Christen 1995a, 759VP . . In Bergey’s Manual of Systematic Bacteriology, , Second Edition., Vol. 2, pp. 467478. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. . New York:: Springer;.
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E. ( 1989 ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39, 224229. [CrossRef]
    [Google Scholar]
  5. Felsenstein J. ( 1981 ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17, 368376. [CrossRef] [PubMed]
    [Google Scholar]
  6. Gauthier G., Gauthier M., Christen R. ( 1995 ). Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. . Int J Syst Bacteriol 45, 755761. [CrossRef] [PubMed]
    [Google Scholar]
  7. Guindon S., Gascuel O. ( 2003 ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52, 696704. [CrossRef] [PubMed]
    [Google Scholar]
  8. Ivanova E. P., Zhukova N. V., Svetashev V. I., Gorshkova N. M., Kurilenko V. V., Frolova G. M., Mikhailov V. V. ( 2000 ). Evaluation of phospholipid and fatty acid compositions as chemotaxonomic markers of Alteromonas-like proteobacteria. . Curr Microbiol 41, 341345. [CrossRef] [PubMed]
    [Google Scholar]
  9. Kimura M. ( 1980 ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16, 111120. [CrossRef] [PubMed]
    [Google Scholar]
  10. Leifson E. ( 1963 ). Determination of carbohydrate metabolism of marine bacteria. . J Bacteriol 85, 11831184.[PubMed]
    [Google Scholar]
  11. Marmur J. ( 1961 ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3, 208218. [CrossRef]
    [Google Scholar]
  12. Matsuyama H., Kamesaki T., Sasaki R., Minami H., Yumoto I. ( 2003 ). Production of two types of exopolysaccharide by Novosphingobium rosa . . J Biosci Bioeng 95, 152156.[PubMed] [CrossRef]
    [Google Scholar]
  13. Matsuyama H., Hirabayashi T., Kasahara H., Minami H., Hoshino T., Yumoto I. ( 2006 ). Glaciecola chathamensis sp. nov., a novel marine polysaccharide-producing bacterium. . Int J Syst Evol Microbiol 56, 28832886. [CrossRef] [PubMed]
    [Google Scholar]
  14. Nishijima M., Araki-Sakai M., Sano H. ( 1997 ). Identification of isoprenoid quinones by frit-FAB liquid chromatography-mass spectrometry for the chemotaxonomy of microorganisms. . J Microbiol Methods 28, 113122. [CrossRef]
    [Google Scholar]
  15. Oh Y.-S., Park A.-R., Lee J.-K., Lim C.-S., Yoo J.-S., Roh D.-H. ( 2011 ). Pseudoalteromonas donghaensis sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 61, 351355. [CrossRef] [PubMed]
    [Google Scholar]
  16. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  17. Tamaoka J., Komagata K. ( 1984 ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25, 125128. [CrossRef]
    [Google Scholar]
  18. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [CrossRef] [PubMed]
    [Google Scholar]
  19. Thompson J. D., Higgins D. G., Gibson T. J. ( 1994 ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22, 46734680. [CrossRef] [PubMed]
    [Google Scholar]
  20. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. e. & other authors ( 1987 ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37, 463464. [CrossRef]
    [Google Scholar]
  21. Xu X.-W., Wu Y.-H., Wang C.-S., Gao X.-H., Wang X.-G., Wu M. ( 2010 ). Pseudoalteromonas lipolytica sp. nov., isolated from the Yangtze River estuary. . Int J Syst Evol Microbiol 60, 21762181. [CrossRef] [PubMed]
    [Google Scholar]
  22. Yumoto I., Yamazaki K., Hishinuma M., Nodasaka Y., Suemori A., Nakajima K., Inoue N., Kawasaki K. ( 2001 ). Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. . Int J Syst Evol Microbiol 51, 349355.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.043604-0
Loading
/content/journal/ijsem/10.1099/ijs.0.043604-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error