1887

Abstract

A novel exopolysaccharide-producing bacterium, designated strain k53, was isolated from sediment from the Arabia Sea, Indian Ocean. The strain was Gram-negative, motile, strictly aerobic, oxidase-positive and catalase-positive, and required Na for growth. Its major isoprenoid quinone was ubiquinone-8 (Q-8), and its cellular fatty acid profile mainly consisted of Cω7, C and Cω7. The DNA G+C content was 43 mol%. 16S rRNA gene sequence analysis suggested that strain k53 is a member of the genus . Strain k53exhibited close phylogenetic affinity to LMEB 39 (98.0% 16S rRNA gene sequence similarity) and HJ51 (97.3 %).The DNA–DNA reassociation values between strain k53 and JCM 15903 and LMG 24469 were 17 % and 12 %, respectively. Owing to the significant differences in phenotypic and chemotaxonomic characteristics, and phylogenetic analysis based on the 16S rRNA gene sequence and DNA–DNA relatedness data, the isolate merits classification as a representative of a novel species, for which the name is proposed. The type strain of this species is k53 ( = JCM 17292 = NCIMB 14688).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.043604-0
2013-05-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/5/1805.html?itemId=/content/journal/ijsem/10.1099/ijs.0.043604-0&mimeType=html&fmt=ahah

References

  1. Barrow G. I. , Feltham R. K. A. . (editors) ( 1993; ). Cowan and Steel’s Manual for the Identification of Medical Bacteria, , 3rd edn.. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  2. Baumann L. , Baumann P. , Mandel M. , Allen R. D. . ( 1972; ). Taxonomy of aerobic marine eubacteria. . J Bacteriol 110:, 402–429.[PubMed]
    [Google Scholar]
  3. Bowman J. P. , McMeekin T. A. . ( 2005; ). Genus Xl. Pseudoalteromonas Gauthier, Gauthier and Christen 1995a, 759VP . . In Bergey’s Manual of Systematic Bacteriology, , Second Edition., Vol. 2, pp. 467–478. Edited by Brenner D. J. , Krieg N. R. , Staley J. T. , Garrity G. M. . . New York:: Springer;.
    [Google Scholar]
  4. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  5. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  6. Gauthier G. , Gauthier M. , Christen R. . ( 1995; ). Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. . Int J Syst Bacteriol 45:, 755–761. [CrossRef] [PubMed]
    [Google Scholar]
  7. Guindon S. , Gascuel O. . ( 2003; ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52:, 696–704. [CrossRef] [PubMed]
    [Google Scholar]
  8. Ivanova E. P. , Zhukova N. V. , Svetashev V. I. , Gorshkova N. M. , Kurilenko V. V. , Frolova G. M. , Mikhailov V. V. . ( 2000; ). Evaluation of phospholipid and fatty acid compositions as chemotaxonomic markers of Alteromonas-like proteobacteria. . Curr Microbiol 41:, 341–345. [CrossRef] [PubMed]
    [Google Scholar]
  9. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  10. Leifson E. . ( 1963; ). Determination of carbohydrate metabolism of marine bacteria. . J Bacteriol 85:, 1183–1184.[PubMed]
    [Google Scholar]
  11. Marmur J. . ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  12. Matsuyama H. , Kamesaki T. , Sasaki R. , Minami H. , Yumoto I. . ( 2003; ). Production of two types of exopolysaccharide by Novosphingobium rosa . . J Biosci Bioeng 95:, 152–156.[PubMed] [CrossRef]
    [Google Scholar]
  13. Matsuyama H. , Hirabayashi T. , Kasahara H. , Minami H. , Hoshino T. , Yumoto I. . ( 2006; ). Glaciecola chathamensis sp. nov., a novel marine polysaccharide-producing bacterium. . Int J Syst Evol Microbiol 56:, 2883–2886. [CrossRef] [PubMed]
    [Google Scholar]
  14. Nishijima M. , Araki-Sakai M. , Sano H. . ( 1997; ). Identification of isoprenoid quinones by frit-FAB liquid chromatography-mass spectrometry for the chemotaxonomy of microorganisms. . J Microbiol Methods 28:, 113–122. [CrossRef]
    [Google Scholar]
  15. Oh Y.-S. , Park A.-R. , Lee J.-K. , Lim C.-S. , Yoo J.-S. , Roh D.-H. . ( 2011; ). Pseudoalteromonas donghaensis sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 61:, 351–355. [CrossRef] [PubMed]
    [Google Scholar]
  16. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  17. Tamaoka J. , Komagata K. . ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  18. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  19. Thompson J. D. , Higgins D. G. , Gibson T. J. . ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef] [PubMed]
    [Google Scholar]
  20. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. e. . & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  21. Xu X.-W. , Wu Y.-H. , Wang C.-S. , Gao X.-H. , Wang X.-G. , Wu M. . ( 2010; ). Pseudoalteromonas lipolytica sp. nov., isolated from the Yangtze River estuary. . Int J Syst Evol Microbiol 60:, 2176–2181. [CrossRef] [PubMed]
    [Google Scholar]
  22. Yumoto I. , Yamazaki K. , Hishinuma M. , Nodasaka Y. , Suemori A. , Nakajima K. , Inoue N. , Kawasaki K. . ( 2001; ). Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. . Int J Syst Evol Microbiol 51:, 349–355.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.043604-0
Loading
/content/journal/ijsem/10.1099/ijs.0.043604-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error