1887

Abstract

A novel species is proposed for two facultatively methanotrophic representatives of the genus , strains H2s and S284, which were isolated from an acidic (pH 4.3) peat-bog lake (Teufelssee, Germany) and an acidic (pH 3.8) peat bog (European North Russia), respectively. Cells of strains H2s and S284 are aerobic, Gram-negative, non-motile, curved coccoids or short rods that contain an intracytoplasmic membrane system typical of type-II methanotrophs. They possess both a soluble and a particulate methane monooxygenase (MMO); the latter is represented by two isozymes, pMMO1 and pMMO2. The preferred growth substrates are methane and methanol. In the absence of C substrates, however, these methanotrophs are capable of slow growth on acetate. Atmospheric nitrogen is fixed by means of an aerotolerant nitrogenase. Strains H2s and S284 grow between pH 4.2 and 7.6 (optimum pH 6.0–6.5) and at 8–37 °C (optimum 25–30 °C). The major fatty acids are Cω8, Cω7 and Cω7; the major quinone is Q-8. The DNA G+C content is 62.0–62.3 mol%. Strains H2s and S284 share identical 16S rRNA gene sequences, which displayed 96.6–97.3 % similarity to sequences of other taxonomically characterized members of the genus Therefore, strains H2s and S284 are classified as members of a novel species, for which the name sp. nov. is proposed; strain H2s ( = DSM 21852  = VKM B-2545) is the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.043505-0
2013-03-01
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/3/1096.html?itemId=/content/journal/ijsem/10.1099/ijs.0.043505-0&mimeType=html&fmt=ahah

References

  1. Baani M., Liesack W.. ( 2008;). Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. . Proc Natl Acad Sci U S A 105:, 10203–10208. [CrossRef][PubMed]
    [Google Scholar]
  2. Belova S. E., Baani M., Suzina N. E., Bodelier P. L. E., Liesack W., Dedysh S. N.. ( 2011;). Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp.. Env Microbiol Reports 3:, 36–46. [CrossRef]
    [Google Scholar]
  3. Bodelier P. L. E., Bär Gillisen M.-J., Hordijk K., Sinninghe Damsté J. S., Rijpstra W. I. C., Geenevasen J. A. J., Dunfield P. F.. ( 2009;). A reanalysis of phospholipid fatty acids as ecological biomarkers for methanotrophic bacteria. . ISME J 3:, 606–617. [CrossRef][PubMed]
    [Google Scholar]
  4. Bowman J.. ( 2006;). The methanotrophs – the families Methylococcaceae and Methylocystaceae. . In The Prokaryotes, , 3rd edn., vol. 5, pp. 266–289. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E... New York:: Springer;. [CrossRef]
    [Google Scholar]
  5. Bowman J. P., Sly L. I., Nichols P. D., Hayward A. C.. ( 1993;). Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. . Int J Syst Bacteriol 43:, 735–753. [CrossRef]
    [Google Scholar]
  6. Collins M. D.. ( 1985;). Analysis of isoprenoid quinones. . Methods Microbiol 18:, 329–366. [CrossRef]
    [Google Scholar]
  7. Dedysh S. N., Panikov N. S.. ( 1997;). Effect of methane concentration on the rate of its oxidation by bacteria in Sphagnum peat. . Microbiology (English translation of Mikrobiologiia) 66:, 563–568.
    [Google Scholar]
  8. Dedysh S. N., Dunfield P. F., Derakshani M., Stubner S., Heyer J., Liesack W.. ( 2003;). Differential detection of type II methanotrophic bacteria in acidic peatlands using newly developed 16S rRNA-targeted fluorescent oligonucleotide probes. . FEMS Microbiol Ecol 43:, 299–308. [CrossRef][PubMed]
    [Google Scholar]
  9. Dedysh S. N., Ricke P., Liesack W.. ( 2004;). NifH and NifD phylogenies: an evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria. . Microbiology 150:, 1301–1313. [CrossRef][PubMed]
    [Google Scholar]
  10. Dedysh S. N., Belova S. E., Bodelier P. L. E., Smirnova K. V., Khmelenina V. N., Chidthaisong A., Trotsenko Y. A., Liesack W., Dunfield P. F.. ( 2007;). Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing ‘signature’ fatty acids of type I methanotrophs. . Int J Syst Evol Microbiol 57:, 472–479. [CrossRef][PubMed]
    [Google Scholar]
  11. Felsenstein J.. ( 1989;). phylip – phylogeny inference package (version 3.2). . Cladistics 5:, 164–166.
    [Google Scholar]
  12. Gal’chenko V. F., Shishkina V. N., Suzina N. E., Trotsenko Iu. A.. ( 1977;). [Isolation and properties of new strains of obligate methanotrophs]. . Mikrobiologiia 46:, 890–897 (in Russian).[PubMed]
    [Google Scholar]
  13. Heyer J., Galchenko V. F., Dunfield P. F.. ( 2002;). Molecular phylogeny of type II methane-oxidizing bacteria isolated from various environments. . Microbiology 148:, 2831–2846.[PubMed]
    [Google Scholar]
  14. Holmes A. J., Costello A., Lidstrom M. E., Murrell J. C.. ( 1995;). Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. . FEMS Microbiol Lett 132:, 203–208. [CrossRef][PubMed]
    [Google Scholar]
  15. Im J., Lee S.-W., Yoon S., DiSpirito A. A., Semrau J. D.. ( 2011;). Characterization of a novel facultative Methylocystis species capable of growth on methane, acetate and ethanol. . Env Microbiol Reports 3:, 174–181. [CrossRef]
    [Google Scholar]
  16. Kip N., Ouyang W., van Winden J., Raghoebarsing A., van Niftrik L., Pol A., Pan Y., Bodrossy L., van Donselaar E. G.. & other authors ( 2011;). Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses. . Appl Environ Microbiol 77:, 5643–5654. [CrossRef][PubMed]
    [Google Scholar]
  17. Lindner A. S., Pacheco A., Aldrich H. C., Costello Staniec A., Uz I., Hodson D. J.. ( 2007;). Methylocystis hirsuta sp. nov., a novel methanotroph isolated from a groundwater aquifer. . Int J Syst Evol Microbiol 57:, 1891–1900. [CrossRef][PubMed]
    [Google Scholar]
  18. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  19. Owen R. J., Hill L. R., Lapage S. P.. ( 1969;). Determination of DNA base compositions from melting profiles in dilute buffers. . Biopolymers 7:, 503–516. [CrossRef][PubMed]
    [Google Scholar]
  20. Radajewski S., Webster G., Reay D. S., Morris S. A., Ineson P., Nedwell D. B., Prosser J. I., Murrell J. C.. ( 2002;). Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing. . Microbiology 148:, 2331–2342.[PubMed]
    [Google Scholar]
  21. Reynolds E. S.. ( 1963;). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. . J Cell Biol 17:, 208–212. [CrossRef][PubMed]
    [Google Scholar]
  22. Semrau J. D., DiSpirito A. A., Vuilleumier S.. ( 2011;). Facultative methanotrophy: false leads, true results, and suggestions for future research. . FEMS Microbiol Lett 323:, 1–12. [CrossRef][PubMed]
    [Google Scholar]
  23. Tchawa Yimga M., Dunfield P. F., Ricke P., Heyer J., Liesack W.. ( 2003;). Wide distribution of a novel pmoA-like gene copy among type II methanotrophs, and its expression in Methylocystis strain SC2. . Appl Environ Microbiol 69:, 5593–5602. [CrossRef][PubMed]
    [Google Scholar]
  24. Wartiainen I., Hestnes A. G., McDonald I. R., Svenning M. M.. ( 2006;). Methylocystis rosea sp. nov., a novel methanotrophic bacterium from Arctic wetland soil, Svalbard, Norway (78° N). . Int J Syst Evol Microbiol 56:, 541–547. [CrossRef][PubMed]
    [Google Scholar]
  25. Whittenbury R., Phillips K. C., Wilkinson J. F.. ( 1970;). Enrichment, isolation and some properties of methane-utilizing bacteria. . J Gen Microbiol 61:, 205–218. [CrossRef][PubMed]
    [Google Scholar]
  26. Wieczorek A. S., Drake H. L., Kolb S.. ( 2011;). Organic acids and ethanol inhibit the oxidation of methane by mire methanotrophs. . FEMS Microbiol Ecol 77:, 28–39. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.043505-0
Loading
/content/journal/ijsem/10.1099/ijs.0.043505-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error