1887

Abstract

The phylogenetic position of a cellulose-producing acetic acid bacterium, strain ID13488, isolated from commercially available Colombian homemade fruit vinegar, was investigated. Analyses using nearly complete 16S rRNA gene sequences, nearly complete 16S–23S rRNA gene internal transcribed spacer (ITS) sequences, as well as concatenated partial sequences of the housekeeping genes , and , allocated the micro-organism to the genus , and more precisely to the group. Moreover, the data suggested that the micro-organism belongs to a novel species in this genus, together with LMG 1693, a non-cellulose-producing strain isolated from vinegar by Kondo and previously classified as a strain of . DNA–DNA hybridizations confirmed this finding, revealing a DNA–DNA relatedness value of 81 % between strains ID13488 and LMG 1693, and values <70 % between strain LMG 1693 and the type strains of the closest phylogenetic neighbours. Additionally, the classification of strains ID13488 and LMG 1693 into a single novel species was supported by amplified fragment length polymorphism (AFLP) and (GTG)-PCR DNA fingerprinting data, as well as by phenotypic data. Strains ID13488 and LMG 1693 could be differentiated from closely related species of the genus by their ability to produce 2- and 5-keto--gluconic acid from -glucose, their ability to produce acid from sucrose, but not from 1-propanol, and their ability to grow on 3 % ethanol in the absence of acetic acid and on ethanol, -ribose, -xylose, sucrose, sorbitol, -mannitol and -gluconate as carbon sources. The DNA G+C content of strains ID13488 and LMG 1693 was 58.0 and 60.7 mol%, respectively. The major ubiquinone of LMG 1693 was Q-10. Taken together these data indicate that strains ID13488 and LMG 1693 represent a novel species of the genus for which the name sp. nov. is proposed. The type strain is LMG 1693 ( = NBRC 3288 = Kondo 51).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.043414-0
2013-03-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/3/1119.html?itemId=/content/journal/ijsem/10.1099/ijs.0.043414-0&mimeType=html&fmt=ahah

References

  1. Asai T. , Iizuka H. , Komagata K. . ( 1964; ). The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. . J Gen Appl Microbiol 10:, 95–126. [CrossRef]
    [Google Scholar]
  2. Bae S. , Shoda M. . ( 2005; ). Statistical optimization of culture conditions for bacterial cellulose production using Box–Behnken design. . Biotechnol Bioeng 90:, 20–28. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bae S. , Sugano Y. , Shoda M. . ( 2004; ). Improvement of bacterial cellulose production by addition of agar in a jar fermentor. . J Biosci Bioeng 97:, 33–38.[PubMed] [CrossRef]
    [Google Scholar]
  4. Castro C. , Zuluaga R. , Putaux J.-L. , Caro G. , Mondragon I. , Gañán P. . ( 2011; ). Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. . Carbohydr Polym 84:, 96–102. [CrossRef]
    [Google Scholar]
  5. Chien L. J. , Chen H. T. , Yang P. F. , Lee C. K. . ( 2006; ). Enhancement of cellulose pellicle production by constitutively expressing Vitreoscilla hemoglobin in Acetobacter xylinum . . Biotechnol Prog 22:, 1598–1603.[PubMed] [CrossRef]
    [Google Scholar]
  6. Cleenwerck I. , De Vos P. . ( 2008; ). Polyphasic taxonomy of acetic acid bacteria: an overview of the currently applied methodology. . Int J Food Microbiol 125:, 2–14. [CrossRef] [PubMed]
    [Google Scholar]
  7. Cleenwerck I. , Vandemeulebroecke K. , Janssens D. , Swings J. . ( 2002; ). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov.. Int J Syst Evol Microbiol 52:, 1551–1558. [CrossRef] [PubMed]
    [Google Scholar]
  8. Cleenwerck I. , Camu N. , Engelbeen K. , De Winter T. , Vandemeulebroecke K. , De Vos P. , De Vuyst L. . ( 2007; ). Acetobacter ghanensis sp. nov., a novel acetic acid bacterium isolated from traditional heap fermentations of Ghanaian cocoa beans. . Int J Syst Evol Microbiol 57:, 1647–1652. [CrossRef] [PubMed]
    [Google Scholar]
  9. Cleenwerck I. , De Wachter M. , González Á. , De Vuyst L. , De Vos P. . ( 2009; ). Differentiation of species of the family Acetobacteraceae by AFLP DNA fingerprinting and reclassification of Gluconacetobacter kombuchae as Gluconacetobacter hansenii . . Int J Syst Evol Microbiol 59:, 1771–1786. [CrossRef] [PubMed]
    [Google Scholar]
  10. Cleenwerck I. , De Vos P. , De Vuyst L. . ( 2010; ). Phylogeny and differentiation of species of the genus Gluconacetobacter and related taxa based on multilocus sequence analyses of housekeeping genes and reclassification of Acetobacter xylinus subsp. sucrofermentans as Gluconacetobacter sucrofermentans (Toyosaki et al. 1996) sp. nov., comb. nov.. Int J Syst Evol Microbiol 60:, 2277–2283. [CrossRef] [PubMed]
    [Google Scholar]
  11. Coenye T. , Falsen E. , Vancanneyt M. , Hoste B. , Govan J. R. W. , Kersters K. , Vandamme P. . ( 1999; ). Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov.. Int J Syst Bacteriol 49:, 405–413. [CrossRef] [PubMed]
    [Google Scholar]
  12. Czaja W. K. , Young D. J. , Kawecki M. , Brown R. M. Jr . ( 2007; ). The future prospects of microbial cellulose in biomedical applications. . Biomacromolecules 8:, 1–12. [CrossRef] [PubMed]
    [Google Scholar]
  13. De Muynck C. , Pereira C. S. S. , Naessens M. , Parmentier S. , Soetaert W. , Vandamme E. J. . ( 2007; ). The genus Gluconobacter oxydans: comprehensive overview of biochemistry and biotechnological applications. . Crit Rev Biotechnol 27:, 147–171. [CrossRef] [PubMed]
    [Google Scholar]
  14. De Vuyst L. , Camu N. , De Winter T. , Vandemeulebroecke K. , Van de Perre V. , Vancanneyt M. , De Vos P. , Cleenwerck I. . ( 2008; ). Validation of the (GTG)(5)-rep-PCR fingerprinting technique for rapid classification and identification of acetic acid bacteria, with a focus on isolates from Ghanaian fermented cocoa beans. . Int J Food Microbiol 125:, 79–90. [CrossRef] [PubMed]
    [Google Scholar]
  15. Dellaglio F. , Cleenwerck I. , Felis G. E. , Engelbeen K. , Janssens D. , Marzotto M. . ( 2005; ). Description of Gluconacetobacter swingsii sp. nov. and Gluconacetobacter rhaeticus sp. nov., isolated from Italian apple fruit. . Int J Syst Evol Microbiol 55:, 2365–2370. [CrossRef] [PubMed]
    [Google Scholar]
  16. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989; ). Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  17. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  18. Franke I. H. , Fegan M. , Hayward C. , Leonard G. , Stackebrandt E. , Sly L. I. . ( 1999; ). Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug. . Int J Syst Bacteriol 49:, 1681–1693. [CrossRef] [PubMed]
    [Google Scholar]
  19. Goris J. , Suzuki K. , De Vos P. , Nakase T. , Kersters K. . ( 1998; ). Evaluation of a microplate DNA–DNA hybridization method compared with the initial renaturation method. . Can J Microbiol 44:, 1148–1153. [CrossRef]
    [Google Scholar]
  20. Gosselé F. , Swings J. , De Ley J. . ( 1980; ). A rapid, simple and simultaneous detection of 2-keto, 5-keto- and 2,5-diketogluconic acids by thin-layer chromatography in culture media of acetic acid bacteria. . Zentralbl Bakteriol 1:, 178–181.
    [Google Scholar]
  21. Gosselé, F. (1982). Grondige fenotypische studie van de genera, Acetobacter, Gluconobacter en Frateuria. PhD thesis, Laboratory of Microbiology, Faculty of Sciences, Ghent University, Belgium.
  22. Hestrin S. , Schramm M. . ( 1954; ). Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. . Biochem J 58:, 345–352.[PubMed]
    [Google Scholar]
  23. Hoenich N. . ( 2006; ). Cellulose for medical applications: past, present and future. . BioResources 1:, 270–280.
    [Google Scholar]
  24. Hutchens S. A. , León R. V. , O’Neill H. M. , Evans B. R. . ( 2007; ). Statistical analysis of optimal culture conditions for Gluconacetobacter hansenii cellulose production. . Lett Appl Microbiol 44:, 175–180. [CrossRef] [PubMed]
    [Google Scholar]
  25. Iino T. , Suzuki R. , Tanaka N. , Kosako Y. , Ohkuma M. , Komagata K. , Uchimura T. . ( 2012; ). Gluconacetobacter kakiaceti sp. nov., an acetic acid bacterium isolated from a traditional Japanese fruit vinegar. . Int J Syst Evol Microbiol 62:, 1465–1469. [CrossRef] [PubMed]
    [Google Scholar]
  26. Kersters K. , Lisdiyanti P. , Komagata K. , Swings J. . ( 2006; ). The family Acetobacteraceae: the genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia . . In The Prokaryotes, , 3rd edn., vol. 5, pp. 163–200. Edited by Dworkin M. , Falkow S. , Rosenberg E. , Schleifer K.-H. , Stackebrandt E. . . New York:: Springer-Verlag;. [CrossRef]
    [Google Scholar]
  27. Lisdiyanti P. , Navarro R. R. , Uchimura T. , Komagata K. . ( 2006; ). Reclassification of Gluconacetobacter hansenii strains and proposals of Gluconacetobacter saccharivorans sp. nov. and Gluconacetobacter nataicola sp. nov.. Int J Syst Evol Microbiol 56:, 2101–2111. [CrossRef] [PubMed]
    [Google Scholar]
  28. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  29. Navarro R. R. , Komagata K. . ( 1999; ). Differentiation of Gluconacetobacter liquefaciens and Gluconacetobacter xylinus on the basis of DNA base composition, DNA relatedness, and oxidation products from glucose. . J Gen Appl Microbiol 45:, 7–15. [CrossRef] [PubMed]
    [Google Scholar]
  30. Ogino H. , Azuma Y. , Hosoyama A. , Nakazawa H. , Matsutani M. , Hasegawa A. , Otsuyama K. , Matsushita K. , Fujita N. , Shirai M. . ( 2011; ). Complete genome sequence of NBRC 3288, a unique cellulose-nonproducing strain of Gluconacetobacter xylinus isolated from vinegar. . J Bacteriol 193:, 6997–6998. [CrossRef] [PubMed]
    [Google Scholar]
  31. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  32. Schüller G. , Hertel C. , Hammes W. P. . ( 2000; ). Gluconacetobacter entanii sp. nov., isolated from submerged high-acid industrial vinegar fermentations. . Int J Syst Evol Microbiol 50:, 2013–2020. [CrossRef] [PubMed]
    [Google Scholar]
  33. Sokollek S. J. , Hertel C. , Hammes W. P. . ( 1998; ). Description of Acetobacter oboediens sp. nov. and Acetobacter pomorum sp. nov., two new species isolated from industrial vinegar fermentations. . Int J Syst Bacteriol 48:, 935–940. [CrossRef] [PubMed]
    [Google Scholar]
  34. Stackebrandt E. , Ebers J. . ( 2006; ). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33:, 152–155.
    [Google Scholar]
  35. Stackebrandt E. , Frederiksen W. , Garrity G. M. , Grimont P. A. D. , Kämpfer P. , Maiden M. C. J. , Nesme X. , Rosselló-Mora R. , Swings J. . & other authors ( 2002; ). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol 52:, 1043–1047. [CrossRef] [PubMed]
    [Google Scholar]
  36. Tanaka M. , Yoshida M. , Murakami S. , Aoki K. , Shinke R. . ( 1998; ). The characterization of phenotypic features of cellulose-forming acetic acid bacteria. . Science Reports of Faculty of Agriculture Kobe University 23:, 65–74.
    [Google Scholar]
  37. Trček J. . ( 2005; ). Quick identification of acetic acid bacteria based on nucleotide sequences of the 16S–23S rDNA internal transcribed spacer region and of the PQQ-dependent alcohol dehydrogenase gene. . Syst Appl Microbiol 28:, 735–745. [CrossRef] [PubMed]
    [Google Scholar]
  38. Trček J. , Teuber M. . ( 2002; ). Genetic and restriction analysis of the 16S–23S rDNA internal transcribed spacer regions of the acetic acid bacteria. . FEMS Microbiol Lett 208:, 69–75. [CrossRef] [PubMed]
    [Google Scholar]
  39. Vancanneyt M. , Mengaud J. , Cleenwerck I. , Vanhonacker K. , Hoste B. , Dawyndt P. , Degivry M. C. , Ringuet D. , Janssens D. , Swings J. . ( 2004; ). Reclassification of Lactobacillus kefirgranum Takizawa et al. 1994 as Lactobacillus kefiranofaciens subsp. kefirgranum subsp. nov. and emended description of L. kefiranofaciens Fujisawa et al. 1988. . Int J Syst Evol Microbiol 54:, 551–556. [CrossRef] [PubMed]
    [Google Scholar]
  40. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  41. Wilson K. . ( 1987; ). Preparation of genomic DNA from bacteria. . In Current Protocols in Molecular Biology, pp. 241–245. Edited by Ausubel F. M. , Brent R. , Kingston R. E. , Moore D. D. , Seidman J. G. , Smith J. A. , Struhl K. . . New York:: Green Publishing and Wiley-Interscience;.
    [Google Scholar]
  42. Yamada Y. , Okada Y. , Kondô K. . ( 1976; ). Isolation and characterization of “polarly flagellated intermediate strains” in acetic acid bacteria. . J Gen Appl Microbiol 22:, 237–245. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.043414-0
Loading
/content/journal/ijsem/10.1099/ijs.0.043414-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error