1887

Abstract

A Gram-stain-negative, non-motile, facultatively anaerobic, acid-tolerant rod, designated strain DKE6, was isolated from an acidic biofilm (pH 2.5) harvested in the pyrite mine Drei Kronen und Ehrt in Germany. The isolate grew optimally at pH 5.5, between 25 and 30 °C and only with casein as the carbon and energy source; although a variety of sugars were tested as growth substrates, none supported growth of the isolate. During casein consumption, strain DKE6 produced ammonium, which led to an alkalinization of the medium. This is a possible strategy to raise the pH in the direct vicinity of the cell and hence modulate the pH towards the growth optimum. The predominant fatty acids (>5 %) were iso-C 3-OH, iso-C, iso-C and iso-Cω9. The DNA G+C content was 66.6 %. Strain DKE6 was not able to oxidize iron or thiosulfate. Iron reduction was detected. The isolate showed 93.3 % 16S rRNA gene sequence similarity to the most closely related cultivable strain, DS-123, but <93.2 % sequence similarity with other type strains of closely related type species of the . On the basis of physiological and biochemical data, the isolate is considered to represent a novel species of a new genus in the class , for which we propose the name gen. nov., sp. nov. The type strain of the type species is DKE6 ( = DSM 24874 = JCM 17596).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.042986-0
2013-04-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/4/1499.html?itemId=/content/journal/ijsem/10.1099/ijs.0.042986-0&mimeType=html&fmt=ahah

References

  1. Anisimova M., Gascuel O.. ( 2006;). Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. . Syst Biol 55:, 539–552. [CrossRef][PubMed]
    [Google Scholar]
  2. Bradford M. M.. ( 1976;). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. . Anal Biochem 72:, 248–254. [CrossRef][PubMed]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  4. Castresana J.. ( 2000;). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. . Mol Biol Evol 17:, 540–552. [CrossRef][PubMed]
    [Google Scholar]
  5. Chevenet F., Brun C., Bañuls A.-L., Jacq B., Christen R.. ( 2006;). TreeDyn: towards dynamic graphics and annotations for analyses of trees. . BMC Bioinformatics 7:, 439. [CrossRef][PubMed]
    [Google Scholar]
  6. Coupland K., Johnson D. B.. ( 2008;). Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria. . FEMS Microbiol Lett 279:, 30–35. [CrossRef][PubMed]
    [Google Scholar]
  7. Cunha S., Tiago I., LuísaPires A., da Costa M. S., Veríssimo A.. ( 2006;). Dokdonella fugitiva sp. nov., a Gammaproteobacterium isolated from potting soil. . Syst Appl Microbiol 29:, 191–196. [CrossRef][PubMed]
    [Google Scholar]
  8. Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J.-F., Guindon S., Lefort V.. & other authors ( 2008;). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. . Nucleic Acids Res 36: (Web Server issue), W465–W469. [CrossRef][PubMed]
    [Google Scholar]
  9. Edgar R. C.. ( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32:, 1792–1797. [CrossRef][PubMed]
    [Google Scholar]
  10. Elias I., Lagergren J.. ( 2007;). Fast computation of distance estimators. . BMC Bioinformatics 8:, 89. [CrossRef][PubMed]
    [Google Scholar]
  11. Felsenstein J.. ( 1989;). phylip – Phylogeny Inference Package (version 3.2). . Cladistics 5:, 164–166.
    [Google Scholar]
  12. Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W., Gascuel O.. ( 2010;). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. . Syst Biol 59:, 307–321. [CrossRef][PubMed]
    [Google Scholar]
  13. Hallberg K. B., Johnson D. B.. ( 2003;). Novel acidophiles isolated from moderately acidic mine drainage waters. . Hydrometallurgy 71:, 139–148. [CrossRef]
    [Google Scholar]
  14. Johnson D. B.. ( 2012;). Geomicrobiology of extremely acidic subsurface environments. . FEMS Microbiol Ecol 81:, 2–12. [CrossRef][PubMed]
    [Google Scholar]
  15. Johnson D. B., McGinness S.. ( 1991;). A highly efficient and universal solid medium for growing mesophilic and moderately themophilic, iron oxidizing, acidophilic bacteria. . J Microbiol Methods 13:, 113–122. [CrossRef]
    [Google Scholar]
  16. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;.
    [Google Scholar]
  17. Kellenberger E., Ryter A., Sechaud J.. ( 1958;). Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. . J Biophys Biochem Cytol 4:, 671–678. [CrossRef][PubMed]
    [Google Scholar]
  18. Kolmert A., Wikström P., Hallberg K. B.. ( 2000;). A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures. . J Microbiol Methods 41:, 179–184. [CrossRef][PubMed]
    [Google Scholar]
  19. Lányí B.. ( 1987;). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19:, 1–67. [CrossRef]
    [Google Scholar]
  20. Lu S., Gischkat S., Reiche M., Akob D. M., Hallberg K. B., Küsel K.. ( 2010;). Ecophysiology of Fe-cycling bacteria in acidic sediments. . Appl Environ Microbiol 76:, 8174–8183. [CrossRef][PubMed]
    [Google Scholar]
  21. McIlvaine T. C.. ( 1921;). A buffer solution for colorimetric comparison. . J Biol Chem 49:, 183–186.
    [Google Scholar]
  22. Mergaert J., Cnockaert M. C., Swings J.. ( 2002;). Fulvimonas soli gen. nov., sp. nov., a gamma-proteobacterium isolated from soil after enrichment on acetylated starch plastic. . Int J Syst Evol Microbiol 52:, 1285–1289. [CrossRef][PubMed]
    [Google Scholar]
  23. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  24. Rainey F. A., Dorsch M., Morgan H. W., Stackebrandt E.. ( 1992;). 16S rDNA analysis of Spirochaeta thermophila – its phylogenetic position and implications for the systematics of the order Spirochaetales. . Syst Appl Microbiol 15:, 197–202. [CrossRef]
    [Google Scholar]
  25. Spring S., Lünsdorf H., Fuchs B. M., Tindall B. J.. ( 2009;). The photosynthetic apparatus and its regulation in the aerobic gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov.. PLoS ONE 4:, e4866. [CrossRef][PubMed]
    [Google Scholar]
  26. Stookey L. L.. ( 1970;). Ferrozine – a new spectrophotometric reagent for iron. . Anal Chem 42:, 779–781. [CrossRef]
    [Google Scholar]
  27. Ten L. N., Jung H.-M., Im W.-T., Oh H. W., Yang D.-C., Yoo S.-A., Lee S.-T.. ( 2009;). Dokdonella ginsengisoli sp. nov., isolated from soil from a ginseng field, and emended description of the genus Dokdonella. . Int J Syst Evol Microbiol 59:, 1947–1952. [CrossRef][PubMed]
    [Google Scholar]
  28. Tindall B. J.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  29. Tindall B. J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  30. Tindall B. J., Sikorski J., Smibert R. M., Kreig N. R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, , 3rd edn., pp. 330–393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R... Washington, DC, USA:: American Society for Microbiology;.
    [Google Scholar]
  31. Xie C.-H., Yokota A.. ( 2005;). Dyella japonica gen. nov., sp. nov., a γ-proteobacterium isolated from soil. . Int J Syst Evol Microbiol 55:, 753–756. [CrossRef][PubMed]
    [Google Scholar]
  32. Yoo S.-H., Weon H.-Y., Anandham R., Kim B.-Y., Hong S.-B., Jeon Y.-A., Koo B.-S., Kwon S.-W.. ( 2009;). Dokdonella soli sp. nov., a gammaproteobacterium isolated from soil. . Int J Syst Evol Microbiol 59:, 1965–1968. [CrossRef][PubMed]
    [Google Scholar]
  33. Yoon J.-H., Kang S.-J., Oh T.-K.. ( 2006;). Dokdonella koreensis gen. nov., sp. nov., isolated from soil. . Int J Syst Evol Microbiol 56:, 145–150. [CrossRef][PubMed]
    [Google Scholar]
  34. Ziegler S., Ackermann S., Majzlan J., Gescher J.. ( 2009;). Matrix composition and community structure analysis of a novel bacterial pyrite leaching community. . Environ Microbiol 11:, 2329–2338. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.042986-0
Loading
/content/journal/ijsem/10.1099/ijs.0.042986-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error