1887

Abstract

Two Gram-reaction-negative, rod-shaped, motile bacteria, designated strains U82 and U95, were isolated from the marine alga collected at Sharks Point, Clovelly, a rocky intertidal zone near Sydney, Australia. Both strains were oxidase- and catalase-positive, formed brown- to black-pigmented colonies and required NaCl for growth. Phylogenetic analysis based on nearly complete 16S rRNA gene sequences revealed that these strains belong to the clade within the . The 16S rRNA genes of both strains were identical across the sequenced 1326 nt, but showed differences in the intergenic spacer region (ITS) between the 16S and the 23S rRNA genes. At the genomic level the DNA G+C contents of strains U82 and U95 were identical (52.6 mol%) and they had a DNA–DNA hybridization value of 83.7 %, suggesting that these strains belong to the same species. The closest described phylogenetic neighbour to strains U82 and U95 was DSM 15283 with 95.8 % 16S rRNA gene sequence similarity. Other close relatives include further species of the genera and . Strains U82 and U95 were negative for bacteriochlorophyll production, showed antibacterial activity towards other marine bacteria, were resistant to the antibiotics gentamicin and spectinomycin and were unable to hydrolyse starch or gelatin. The major fatty acids (>1 %) were 18 : 1ω7, 16 : 0, 18 : 2, 10 : 0 3-OH, 12 : 0, 20 : 1 2-OH and 18 : 0. The polar lipid pattern indicated the presence of phosphatidylglycerol, phosphatidylcholine, two unidentified aminolipids and four unidentified phospholipids. Both strains produced ubiquinone 10 (Q-10) as the sole respiratory lipoquinone. Based on their phenotypic and phylogenetic characteristics, it is suggested that strains U82 and U95 are members of a novel species within a new genus for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is U95 ( = DSM 24752 = LMG 26464).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.042838-0
2013-05-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/5/1589.html?itemId=/content/journal/ijsem/10.1099/ijs.0.042838-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990; ). Basic local alignment search tool. . J Mol Biol 215:, 403–410.[PubMed] [CrossRef]
    [Google Scholar]
  2. Arahal D. R. , Macián M. C. , Garay E. , Pujalte M. J. . ( 2005; ). Thalassobius mediterraneus gen. nov., sp. nov., and reclassification of Ruegeria gelatinovorans as Thalassobius gelatinovorus comb. nov.. Int J Syst Evol Microbiol 55:, 2371–2376. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bautsch W. . ( 1992; ). Bacterial genome mapping by two-dimensional pulsed-field gel electrophoresis (2D-PFGE). . In Pulsed-Field Gel Electrophoresis: Protocols, Methods and Theories, pp. 185–201. Edited by Burmeister M. , Ulanovsky M. . . Totowa, NJ:: Humana Press;. [CrossRef]
    [Google Scholar]
  4. Béjà O. , Suzuki M. T. , Heidelberg J. F. , Nelson W. C. , Preston C. M. , Hamada T. , Eisen J. A. , Fraser C. M. , DeLong E. F. . ( 2002; ). Unsuspected diversity among marine aerobic anoxygenic phototrophs. . Nature 415:, 630–633. [CrossRef] [PubMed]
    [Google Scholar]
  5. Brinkhoff T. , Muyzer G. . ( 1997; ). Increased species diversity and extended habitat range of sulfur-oxidizing Thiomicrospira spp.. Appl Environ Microbiol 63:, 3789–3796.[PubMed]
    [Google Scholar]
  6. Brinkhoff T. , Bach G. , Heidorn T. , Liang L. , Schlingloff A. , Simon M. . ( 2004; ). Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. . Appl Environ Microbiol 70:, 2560–2565. [CrossRef] [PubMed]
    [Google Scholar]
  7. Brinkhoff T. , Giebel H.-A. , Simon M. . ( 2008; ). Diversity, ecology, and genomics of the Roseobacter clade: a short overview. . Arch Microbiol 189:, 531–539. [CrossRef] [PubMed]
    [Google Scholar]
  8. Buchan A. , González J. M. , Moran M. A. . ( 2005; ). Overview of the marine Roseobacter lineage. . Appl Environ Microbiol 71:, 5665–5677. [CrossRef] [PubMed]
    [Google Scholar]
  9. Burke C. , Thomas T. , Lewis M. , Steinberg P. , Kjelleberg S. . ( 2011; ). Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis . . ISME J 5:, 590–600. [CrossRef] [PubMed]
    [Google Scholar]
  10. Cashion P. , Holder-Franklin M. A. , McCully J. , Franklin M. . ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef] [PubMed]
    [Google Scholar]
  11. Chen M.-H. , Sheu S.-Y. , Chen C. A. , Wang J.-T. , Chen W.-M. . ( 2011; ). Shimia isoporae sp. nov., isolated from the reef-building coral Isopora palifera . . Int J Syst Evol Microbiol 61:, 823–827. [CrossRef] [PubMed]
    [Google Scholar]
  12. Choi D. H. , Cho B. C. . ( 2006; ). Shimia marina gen. nov., sp. nov., a novel bacterium of the Roseobacter clade isolated from biofilm in a coastal fish farm. . Int J Syst Evol Microbiol 56:, 1869–1873. [CrossRef] [PubMed]
    [Google Scholar]
  13. Clayton R. R. . ( 1966; ). Spectroscopic analysis of bacteriochlorophylls in vivo and in vitro . . Photochem Photobiol 5:, 669–677. [CrossRef]
    [Google Scholar]
  14. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  15. Egan S. , Thomas T. , Kjelleberg S. . ( 2008; ). Unlocking the diversity and biotechnological potential of marine surface associated microbial communities. . Curr Opin Microbiol 11:, 219–225. [CrossRef] [PubMed]
    [Google Scholar]
  16. Gregersen T. . ( 1978; ). Rapid method for distinction of Gram-negative from Gram-positive bacteria. . Eur J Appl Microbiol Biotechnol 5:, 123–127. [CrossRef]
    [Google Scholar]
  17. Hunt D. E. , Klepac-Ceraj V. , Acinas S. G. , Gautier C. , Bertilsson S. , Polz M. F. . ( 2006; ). Evaluation of 23S rRNA PCR primers for use in phylogenetic studies of bacterial diversity. . Appl Environ Microbiol 72:, 2221–2225. [CrossRef] [PubMed]
    [Google Scholar]
  18. Huss V. A. R. , Festl H. , Schleifer K. H. . ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kovacs N. . ( 1956; ). Identification of Pseudomonas pyocyanea by the oxidase reaction. . Nature 178:, 703. [CrossRef] [PubMed]
    [Google Scholar]
  20. Labrenz M. , Collins M. D. , Lawson P. A. , Tindall B. J. , Braker G. , Hirsch P. . ( 1998; ). Antarctobacter heliothermus gen. nov., sp. nov., a budding bacterium from hypersaline and heliothermal Ekho Lake. . Int J Syst Bacteriol 48:, 1363–1372. [CrossRef] [PubMed]
    [Google Scholar]
  21. Ludwig W. , Strunk O. , Westram R. , Richter L. , Meier H. , Yadhukumar , Buchner A. , Lai T. , Steppi S. . & other authors ( 2004; ). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef] [PubMed]
    [Google Scholar]
  22. Marden P. , Tunlid A. , Malmcrona-Friberg K. , Odham G. , Kjelleberg S. . ( 1985; ). Physiological and morphological changes during short term starvation of marine bacteria isolates. . Arch Microbiol 142:, 326–332. [CrossRef]
    [Google Scholar]
  23. Martens T. , Gram L. , Grossart H. P. , Kessler D. , Müller R. , Simon M. , Wenzel S. C. , Brinkhoff T. . ( 2007; ). Bacteria of the Roseobacter clade show potential for secondary metabolite production. . Microb Ecol 54:, 31–42. [CrossRef] [PubMed]
    [Google Scholar]
  24. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  25. Moran M. A. , Belas R. , Schell M. A. , González J. M. , Sun F. , Sun S. , Binder B. J. , Edmonds J. , Ye W. . & other authors ( 2007; ). Ecological genomics of marine roseobacters. . Appl Environ Microbiol 73:, 4559–4569. [CrossRef] [PubMed]
    [Google Scholar]
  26. Park S. , Lee M.-H. , Lee J.-S. , Oh T.-K. , Yoon J.-H. . ( 2012; ). Thalassobius maritimus sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 62:, 8–12. [CrossRef] [PubMed]
    [Google Scholar]
  27. Penesyan A. , Marshall-Jones Z. , Holmstrom C. , Kjelleberg S. , Egan S. . ( 2009; ). Antimicrobial activity observed among cultured marine epiphytic bacteria reflects their potential as a source of new drugs. . FEMS Microbiol Ecol 69:, 113–124. [CrossRef] [PubMed]
    [Google Scholar]
  28. Rosenberg E. , Koren O. , Reshef L. , Efrony R. , Zilber-Rosenberg I. . ( 2007; ). The role of microorganisms in coral health, disease and evolution. . Nat Rev Microbiol 5:, 355–362. [CrossRef] [PubMed]
    [Google Scholar]
  29. Rüger H. J. , Höfle M. G. . ( 1992; ). Marine star-shaped-aggregate-forming bacteria: Agrobacterium atlanticum sp. nov.; Agrobacterium meteori sp. nov.; Agrobacterium ferrugineum sp. nov., nom. rev.; Agrobacterium gelatinovorum sp. nov., nom. rev.; and Agrobacterium stellulatum sp. nov., nom. rev.. Int J Syst Bacteriol 42:, 133–143. [CrossRef] [PubMed]
    [Google Scholar]
  30. Schattner P. , Brooks A. N. , Lowe T. M. . ( 2005; ). The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. . Nucleic Acids Res 33: (Web Server issue), W686–W689. [CrossRef] [PubMed]
    [Google Scholar]
  31. Slightom R. N. , Buchan A. . ( 2009; ). Surface colonization by marine roseobacters: integrating genotype and phenotype. . Appl Environ Microbiol 75:, 6027–6037. [CrossRef] [PubMed]
    [Google Scholar]
  32. Smibert R. M. , Krieg N. R. . ( 1994; ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  33. Strömpl C. , Tindall B. J. , Jarvis G. N. , Lünsdorf H. , Moore E. R. B. , Hippe H. . ( 1999; ). A re-evaluation of the taxonomy of the genus Anaerovibrio, with the reclassification of Anaerovibrio glycerini as Anaerosinus glycerini gen. nov., comb. nov., and Anaerovibrio burkinabensis as Anaeroarcus burkinensis [corrig.] gen. nov., comb. nov.. Int J Syst Bacteriol 49:, 1861–1872. [CrossRef] [PubMed]
    [Google Scholar]
  34. Tamaoka J. , Komagata K. . ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  35. Tindall B. J. . ( 1990; ). Lipid composition of Halobacterium lacusprofundi . . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  36. Tindall B. J. . ( 1996; ). Respiratory lipoquinones as biomarkers. . In Molecular Microbial Ecology Manual, (suppl. 1), pp. 1–21. Edited by Akkermans A. , de Bruijn F. , van Elsas D. . . Dordrecht:: Kluwer;.
    [Google Scholar]
  37. Uchino Y. , Hirata A. , Yokota A. , Sugiyama J. . ( 1998; ). Reclassification of marine Agrobacterium species: proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev.. J Gen Appl Microbiol 44:, 201–210. [CrossRef] [PubMed]
    [Google Scholar]
  38. Wagner-Döbler I. , Biebl H. . ( 2006; ). Environmental biology of the marine Roseobacter lineage. . Annu Rev Microbiol 60:, 255–280. [CrossRef] [PubMed]
    [Google Scholar]
  39. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  40. Webster N. S. , Taylor M. W. . ( 2012; ). Marine sponges and their microbial symbionts: love and other relationships. . Environ Microbiol 14:, 335–346. [CrossRef] [PubMed]
    [Google Scholar]
  41. Yi H. , Chun J. . ( 2006; ). Thalassobius aestuarii sp. nov., isolated from tidal flat sediment. . J Microbiol 44:, 171–176.[PubMed]
    [Google Scholar]
  42. Yutin N. , Suzuki M. T. , Béjà O. . ( 2005; ). Novel primers reveal wider diversity among marine aerobic anoxygenic phototrophs. . Appl Environ Microbiol 71:, 8958–8962. [CrossRef] [PubMed]
    [Google Scholar]
  43. Zech H. , Thole S. , Schreiber K. , Kalhöfer D. , Voget S. , Brinkhoff T. , Simon M. , Schomburg D. , Rabus R. . ( 2009; ). Growth phase-dependent global protein and metabolite profiles of Phaeobacter gallaeciensis strain DSM 17395, a member of the marine Roseobacter-clade. . Proteomics 9:, 3677–3697. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.042838-0
Loading
/content/journal/ijsem/10.1099/ijs.0.042838-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error