1887

Abstract

Nine novel strains of halophilic and alkaliphilic lactic acid bacteria isolated from European soft and semi-hard cheeses by using a saline, alkaline medium (7 % NaCl, pH 9.5) were taxonomically characterized. The isolates were Gram-stain-positive, non-sporulating and non-motile. They lacked catalase and quinones. Under anaerobic cultivation conditions, lactate was produced from -glucose with the production of formate, acetate and ethanol with a molar ratio of approximately 2 : 1 : 1. Under aerobic cultivation conditions, acetate and lactate were produced from -glucose. The isolates were slightly halophilic, highly halotolerant and alkaliphilic. The optimum NaCl concentration for growth ranged between 2.0 % and 5.0 % (w/v), with a growth range of 0–1 % to 15–17.5 %. The optimum pH for growth ranged between 8.5 and 9.5, with a growth range of 7.0–7.5 to 9.5–10.0. Comparative sequence analysis of the 16S rRNA genes revealed that the isolates occupied a phylogenetic position within the genus , showing the highest sequence similarity (98.2 %) to T22-1-2. The isolates constituted a single genomic species with DNA–DNA hybridization values of 79–100 % among the isolates and <29 % between the isolates and other members of the genus , from which the isolates were different in motility and flagellation, growth responses to NaCl concentrations and pH, and profiles of sugar fermentation. The DNA G+C contents were between 36.0 and 37.6 mol%. The cell-wall peptidoglycan was type A4β, Orn--Asp. The major components of cellular fatty acids were C, C and Cω9. Based on the phenotypic characteristics and genetic distinctness, the isolates are classified as a novel species within the genus , for which the name sp. nov. is proposed. The type strain is 3AD-1 ( = DSM 25751 = JCM 18271).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.042556-0
2013-04-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/4/1471.html?itemId=/content/journal/ijsem/10.1099/ijs.0.042556-0&mimeType=html&fmt=ahah

References

  1. Axelsson L. T.. ( 1993;). Lactic acid bacteria: classification and physiology. . In Lactic Acid Bacteria, pp. 1–63. Edited by Salminen S., von Wright A... New York:: Marcel Dekker;.
    [Google Scholar]
  2. Carlsson J., Griffith C. J.. ( 1974;). Fermentation products and bacterial yields in glucose-limited and nitrogen-limited cultures of streptococci. . Arch Oral Biol 19:, 1105–1109. [CrossRef][PubMed]
    [Google Scholar]
  3. Cogan T. M., Bresford T. P.. ( 2002;). Microbiology of hard cheese. . In Dairy Microbiology Handbook, , 3rd edn., pp. 515–560. Edited by Robinson R. K... New York:: Wiley and Sons;.
    [Google Scholar]
  4. Feurer C., Irlinger F., Spinnler H. E., Glaser P., Vallaeys T.. ( 2004;). Assessment of the rind microbial diversity in a farmhouse-produced vs a pasteurized industrially produced soft red-smear cheese using both cultivation and rDNA-based methods. . J Appl Microbiol 97:, 546–556. [CrossRef][PubMed]
    [Google Scholar]
  5. Fukui K., Kato K., Kodama T., Ohta H., Shimamoto T., Shimono T.. ( 1988;). Kinetic study of a change in intracellular ATP level associated with aerobic catabolism of ethanol by Streptococcus mutans. . J Bacteriol 170:, 4589–4593.[PubMed]
    [Google Scholar]
  6. Ishikawa M., Ishizaki S., Yamamoto Y., Yamasato K.. ( 2002;). Paraliobacillus ryukyuensis gen. nov., sp. nov., a new Gram-positive, slightly halophilic, extremely halotolerant, facultative anaerobe isolated from a decomposing marine alga. . J Gen Appl Microbiol 48:, 269–279. [CrossRef][PubMed]
    [Google Scholar]
  7. Ishikawa M., Nakajima K., Yanagi M., Yamamoto Y., Yamasato K.. ( 2003;). Marinilactibacillus psychrotolerans gen. nov., sp. nov., a halophilic and alkaliphilic marine lactic acid bacterium isolated from marine organisms in temperate and subtropical areas of Japan. . Int J Syst Evol Microbiol 53:, 711–720. [CrossRef][PubMed]
    [Google Scholar]
  8. Ishikawa M., Nakajima K., Itamiya Y., Furukawa S., Yamamoto Y., Yamasato K.. ( 2005;). Halolactibacillus halophilus gen. nov., sp. nov. and Halolactibacillus miurensis sp. nov., halophilic and alkaliphilic marine lactic acid bacteria constituting a phylogenetic lineage in Bacillus rRNA group 1. . Int J Syst Evol Microbiol 55:, 2427–2439. [CrossRef][PubMed]
    [Google Scholar]
  9. Ishikawa M., Kodama K., Yasuda H., Okamoto-Kainuma A., Koizumi K., Yamasato K.. ( 2007;). Presence of halophilic and alkaliphilic lactic acid bacteria in various cheeses. . Lett Appl Microbiol 44:, 308–313. [CrossRef][PubMed]
    [Google Scholar]
  10. Ishikawa M., Tanasupawat S., Nakajima K., Kanamori H., Ishizaki S., Kodama K., Okamoto-Kainuma A., Koizumi Y., Yamamoto Y., Yamasato K.. ( 2009;). Alkalibacterium thalassium sp. nov., Alkalibacterium pelagium sp. nov., Alkalibacterium putridalgicola sp. nov. and Alkalibacterium kapii sp. nov., slightly halophilic and alkaliphilic marine lactic acid bacteria isolated from marine organisms and salted foods collected in Japan and Thailand. . Int J Syst Evol Microbiol 59:, 1215–1226. [CrossRef][PubMed]
    [Google Scholar]
  11. Ishikawa M., Nakajima K., Ishizaki S., Kodama K., Okamoto-Kainuma A., Koizumi Y., Yamamoto Y., Yamasato K.. ( 2011;). Alkalibacterium subtropicum sp. nov., a slightly halophilic and alkaliphilic marine lactic acid bacterium isolated from decaying marine algae. . Int J Syst Evol Microbiol 61:, 2996–3002. [CrossRef][PubMed]
    [Google Scholar]
  12. Jones B. E., Grant W. D., Collins N. C., Mwatha W. E.. ( 1994;). Alkaliphiles: diversity and identification. . In Bacterial Diversity and Systematics, pp. 195–230. Edited by Priest F. G., Ramos-Cormenzana A., Tindall B. J... New York:: Plenum Press;. [CrossRef]
    [Google Scholar]
  13. Kushner D. J.. ( 1992;). Growth and nutrition of halophilic bacteria. . In The Biology of Halophilic Bacteria, pp. 87–103. Edited by Vreeland R. H., Hochstein L... Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  14. Liu J.-R., Tanner R. S., Schumann P., Weiss N., McKenzie C. A., Janssen P. H., Seviour E. M., Lawson P. A., Allen T. D., Seviour R. J.. ( 2002;). Emended description of the genus Trichococcus, description of Trichococcus collinsii sp. nov., and reclassification of Lactosphaera pasteurii as Trichococcus pasteurii comb. nov. and of Ruminococcus palustris as Trichococcus palustris comb. nov. in the low-G+C Gram-positive bacteria. . Int J Syst Evol Microbiol 52:, 1113–1126. [CrossRef][PubMed]
    [Google Scholar]
  15. Maoz A., Mayr R., Scherer S.. ( 2003;). Temporal stability and biodiversity of two complex antilisterial cheese-ripening microbial consortia. . Appl Environ Microbiol 69:, 4012–4018. [CrossRef][PubMed]
    [Google Scholar]
  16. Monnet C., Correia K., Sarthou A.-S., Irlinger F.. ( 2006;). Quantitative detection of Corynebacterium casei in cheese by real-time PCR. . Appl Environ Microbiol 72:, 6972–6979. [CrossRef][PubMed]
    [Google Scholar]
  17. Mwirichia R., Muigai A. W., Tindall B., Boga H. I., Stackebrandt E.. ( 2010;). Isolation and characterisation of bacteria from the haloalkaline Lake Elmenteita, Kenya. . Extremophiles 14:, 339–348. [CrossRef][PubMed]
    [Google Scholar]
  18. Nakajima K., Hirota K., Nodasaka Y., Yumoto I.. ( 2005;). Alkalibacterium iburiense sp. nov., an obligate alkaliphile that reduces an indigo dye. . Int J Syst Evol Microbiol 55:, 1525–1530. [CrossRef][PubMed]
    [Google Scholar]
  19. Ntougias S., Russell N. J.. ( 2001;). Alkalibacterium olivoapovliticus gen. nov., sp. nov., a new obligately alkaliphilic bacterium isolated from edible-olive wash-waters. . Int J Syst Evol Microbiol 51:, 1161–1170. [CrossRef][PubMed]
    [Google Scholar]
  20. Rhee S. K., Pack M. Y.. ( 1980;). Effect of environmental pH on fermentation balance of Lactobacillus bulgaricus. . J Bacteriol 144:, 217–221.[PubMed]
    [Google Scholar]
  21. Roth E., Miescher Schwenninger S., Hasler M., Eugster-Meier E., Lacroix C.. ( 2010;). Population dynamics of two antilisterial cheese surface consortia revealed by temporal temperature gradient gel electrophoresis. . BMC Microbiol 10:, 74. [CrossRef][PubMed]
    [Google Scholar]
  22. Roth E., Schwenninger S. M., Eugster-Meier E., Lacroix C.. ( 2011;). Facultative anaerobic halophilic and alkaliphilic bacteria isolated from a natural smear ecosystem inhibit Listeria growth in early ripening stages. . Int J Food Microbiol 147:, 26–32. [CrossRef][PubMed]
    [Google Scholar]
  23. Sakamoto M., Komagata K.. ( 1996;). Aerobic growth of and activities of NADH oxidase and NADH peroxidase in lactic acid bacteria. . J Ferment Bioeng 82:, 210–216. [CrossRef]
    [Google Scholar]
  24. Toffin L., Zink K., Kato C., Pignet P., Bidault A., Bienvenu N., Birrien J.-L., Prieur D.. ( 2005;). Marinilactibacillus piezotolerans sp. nov., a novel marine lactic acid bacterium isolated from deep sub-seafloor sediment of the Nankai Trough. . Int J Syst Evol Microbiol 55:, 345–351. [CrossRef][PubMed]
    [Google Scholar]
  25. Yamada T., Carlsson J.. ( 1975;). Regulation of lactate dehydrogenase and change of fermentation products in streptococci. . J Bacteriol 124:, 55–61.[PubMed]
    [Google Scholar]
  26. Yumoto I., Hirota K., Nodasaka Y., Yokota Y., Hoshino T., Nakajima K.. ( 2004;). Alkalibacterium psychrotolerans sp. nov., a psychrotolerant obligate alkaliphile that reduces an indigo dye. . Int J Syst Evol Microbiol 54:, 2379–2383. [CrossRef][PubMed]
    [Google Scholar]
  27. Yumoto I., Hirota K., Nodasaka Y., Tokiwa Y., Nakajima K.. ( 2008;). Alkalibacterium indicireducens sp. nov., an obligate alkaliphile that reduces indigo dye. . Int J Syst Evol Microbiol 58:, 901–905. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.042556-0
Loading
/content/journal/ijsem/10.1099/ijs.0.042556-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error