1887

Abstract

A Gram-negative bacterium, designated CKTN2, was isolated from compost. Cells of strain CKTN2 were strictly aerobic rods. The isolate grew at 20–50 °C (optimum 40–45 °C), but not below 15 °C or above 52 °C, and at pH 5.9–8.8 (optimum pH 7.0), but not below pH 5.4 or above pH 9.3. The DNA G+C content was 40.3 mol%. The predominant menaquinone was MK-7. The major fatty acids were iso-C (45.2 %), iso-C 3-OH (11.1 %) and C (14.5 %). Analysis of the 16S rRNA gene sequence of strain CKTN2 revealed that it is a member of the genus and is most closely related to DSM 22362 (93.2 % 16S rRNA gene sequence similarity). Strain CKTN2 could be distinguished from its closest phylogenetic relatives by different phenotypic characteristics. According to the phenotypic and genotypic characteristics, strain CKTN2 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CKTN2 ( = JCM 17858  = KCTC 23708).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.042481-0
2013-05-01
2022-01-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/5/1584.html?itemId=/content/journal/ijsem/10.1099/ijs.0.042481-0&mimeType=html&fmt=ahah

References

  1. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. ( 1977 ). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100, 221230.[PubMed] [CrossRef]
    [Google Scholar]
  2. DeSantis T. Z. Jr, Hugenholtz P., Keller K., Brodie E. L., Larsen N., Piceno Y. M., Phan R., Andersen G. L. ( 2006 ). nast: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. . Nucleic Acids Res 34 (web server issue), W394W399. [View Article] [PubMed]
    [Google Scholar]
  3. Euzéby J. P. ( 1997 ). List of Bacterial Names with Standing in Nomenclature: a Folder Available on the Internet. Int J Syst Bacteriol 47, 590–592. (List of Prokaryotic Names with Standing in Nomenclature. Last full update 4 March 2012.) http://www.bacterio.net.
  4. Felsenstein J. ( 1981 ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17, 368376. [View Article] [PubMed]
    [Google Scholar]
  5. Felsenstein J. ( 1985 ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39, 783791. [View Article]
    [Google Scholar]
  6. Hall T. A. ( 1999 ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41, 9598.
    [Google Scholar]
  7. Kawahara K., Moll H., Knirel Y. A., Seydel U., Zähringer U. ( 2000 ). Structural analysis of two glycosphingolipids from the lipopolysaccharide-lacking bacterium Sphingomonas capsulata . . Eur J Biochem 267, 18371846. [View Article] [PubMed]
    [Google Scholar]
  8. Kimura M. ( 1980 ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16, 111120. [View Article] [PubMed]
    [Google Scholar]
  9. Matsuyama H., Katoh H., Ohkushi T., Satoh A., Kawahara K., Yumoto I. ( 2008 ). Sphingobacterium kitahiroshimense sp. nov., isolated from soil. . Int J Syst Evol Microbiol 58, 15761579. [View Article] [PubMed]
    [Google Scholar]
  10. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  11. Smibert R. M., Krieg N. L. ( 1994 ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  12. Steyn P. L., Segers P., Vancanneyt M., Sandra P., Kersters K., Joubert J. J. ( 1998 ). Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. Proposal of the family Sphingobacteriaceae fam. nov.. Int J Syst Bacteriol 48, 165177. [View Article] [PubMed]
    [Google Scholar]
  13. Takeuchi M., Yokota A. ( 1992 ). Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb. nov., Sphingobacterium thalpophilum comb. nov. and two genospecies of the genus Sphingobacterium, and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum . . J Gen Appl Microbiol 38, 465482. [View Article]
    [Google Scholar]
  14. Tamaoka J., Komagata K. ( 1984 ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25, 125128. [View Article]
    [Google Scholar]
  15. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [View Article] [PubMed]
    [Google Scholar]
  16. Yabe S., Kato A., Hazaka M., Yokota A. ( 2009 ). Thermaerobacter composti sp. nov., a novel extremely thermophilic bacterium isolated from compost. . J Gen Appl Microbiol 55, 323328. [View Article] [PubMed]
    [Google Scholar]
  17. Yabe S., Aiba Y., Sakai Y., Hazaka M., Yokota A. ( 2010 ). Thermosporothrix hazakensis gen. nov., sp. nov., isolated from compost, description of Thermosporotrichaceae fam. nov. within the class Ktedonobacteria Cavaletti et al. 2007 and emended description of the class Ktedonobacteria . . Int J Syst Evol Microbiol 60, 17941801. [View Article] [PubMed]
    [Google Scholar]
  18. Yabe S., Aiba Y., Sakai Y., Hazaka M., Yokota A. ( 2012 ). Thermovum composti gen. nov., sp. nov. an alphaproteobacterium from compost. . Int J Syst Evol Microbiol 62, 29912996. [View Article]
    [Google Scholar]
  19. Yabuuchi E., Kaneko T., Yano I., Moss C. W., Miyoshi N. ( 1983 ). Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and IIb. . Int J Syst Bacteriol 33, 580598. [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.042481-0
Loading
/content/journal/ijsem/10.1099/ijs.0.042481-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error