1887

Abstract

A Gram-negative, non-motile, pale-yellow, rod-shaped bacterial strain, PL-41, was isolated from forest soil at the ancient Khiyik River valley in Xinjiang Uyghur Autonomous Region, People's Republic of China. Strain PL-41 grew optimally at 30 °C and pH 7.0–8.0. The major quinone was Q-10. The predominant cellular fatty acids of strain PL-41 were summed feature 8 (comprising Cω7 and Cω6), C and C cyclo ω8. Polar lipids of strain PL-41 include two unidentified aminophospholipids (APL1, 2), two unidentified phospholipids (PL1, 2), phosphatidylcholine and three unidentified lipids (L1–3). Strain PL-41 showed 16S rRNA gene sequence similarity of 97.0–97.5 % to the type strains of recognized species of the genus . Phylogenetic analysis of strain PL-41 based on the sequences of housekeeping genes and confirmed (similarities are less than 90 %) its position as a distinct species of the genus . The DNA G+C content was 57.8 mol%. DNA–DNA relatedness between strain PL-41 and the type strains of S02, CCBAU 01393, CCBAU 05176 and CCBAU 7190B were 33.4, 22.6, 25.5 and 45.1 %, respectively, indicating that strain PL-41 was distinct from them genetically. Strain PL-41 also can be differentiated from these four phylogenetically related species of the genus by various phenotypic properties. On the basis of phenotypic properties, phylogenetic distinctiveness and genetic data, strain PL-41 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is PL-41 ( = CCTCC AB 2011011 = NRRL B-59556).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.042176-0
2013-07-01
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/7/2424.html?itemId=/content/journal/ijsem/10.1099/ijs.0.042176-0&mimeType=html&fmt=ahah

References

  1. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  2. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  3. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  4. Frank B.. ( 1889;). Ueber die Pilzsymbiose der Leguminosen. . Ber Dtsch Bot Ges 7:, 332–346 (in German).
    [Google Scholar]
  5. Kates M.. ( 1972;). Techniques of Lipidology. . New York: Elsevier. [CrossRef]
    [Google Scholar]
  6. Kates M.. ( 1986;). Influence of salt concentration on membrane lipids of halophilic bacteria. . FEMS Microbiol Lett 39:, 95–101. [CrossRef]
    [Google Scholar]
  7. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  8. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  9. Kimura M.. ( 1983;). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  10. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  11. Lee K. B., Liu C. T., Anzai Y., Kim H., Aono T., Oyaizu H.. ( 2005;). The hierarchical system of the ‘Alphaproteobacteria’: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov.. . Int J Syst Evol Microbiol 55:, 1907–1919. [CrossRef][PubMed]
    [Google Scholar]
  12. Menes R. J., Muxí L.. ( 2002;). Anaerobaculum mobile sp. nov., a novel anaerobic, moderately thermophilic, peptide-fermenting bacterium that uses crotonate as an electron acceptor, and emended description of the genus Anaerobaculum. . Int J Syst Evol Microbiol 52:, 157–164.[PubMed]
    [Google Scholar]
  13. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  14. Oren A., Duker S., Ritter S.. ( 1996;). The polar lipid composition of Walsby’s square bacterium. . FEMS Microbiol Lett 138:, 135–140. [CrossRef]
    [Google Scholar]
  15. Peng G., Yuan Q., Li H., Zhang W., Tan Z.. ( 2008;). Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta. . Int J Syst Evol Microbiol 58:, 2158–2163. [CrossRef][PubMed]
    [Google Scholar]
  16. Ramana Ch. V., Parag B., Girija K. R., Ram B. R., Ramana V. V., Sasikala Ch.. ( 2013;). Rhizobium subbaraonis sp. nov., an endolithic bacterium isolated from beach sand. . Int J Syst Evol Microbiol 63:, 581–585. [CrossRef][PubMed]
    [Google Scholar]
  17. Ren W., Chen W. F., Sui X. H., Wang E. T., Chen W. X.. ( 2011;). Rhizobium vignae sp. nov., a symbiotic bacterium isolated from multiple legume species. . Int J Syst Evol Microbiol 61:, 580–586. [CrossRef][PubMed]
    [Google Scholar]
  18. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  19. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  20. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  21. Vincent J. M.. ( 1970;). The cultivation, isolation and maintenance of rhizobia. . In A Manual for the Practical Study of the Root-Nodule Bacteria, pp. 1–13. Edited by Vincent J. M... Oxford:: Blackwell Scientific;.
    [Google Scholar]
  22. Wang F., Wang E. T., Wu L. J., Sui X. H., Li Y. Jr, Chen W. X.. ( 2011;). Rhizobium vallis sp. nov., isolated from nodules of three leguminous species. . Int J Syst Evol Microbiol 61:, 2582–2588. [CrossRef][PubMed]
    [Google Scholar]
  23. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  24. Wei G. H., Tan Z. Y., Zhu M. E., Wang E. T., Han S. Z., Chen W. X.. ( 2003;). Characterization of rhizobia isolated from legume species within the genera Astragalus and Lespedeza grown in the Loess Plateau of China and description of Rhizobium loessense sp. nov.. . Int J Syst Evol Microbiol 53:, 1575–1583. [CrossRef][PubMed]
    [Google Scholar]
  25. Yoon J. H., Lee S. T., Park Y. H.. ( 1998;). Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. . Int J Syst Bacteriol 48:, 187–194. [CrossRef][PubMed]
    [Google Scholar]
  26. Yoon J. H., Kim I. G., Shin D. Y., Kang K. H., Park Y. H.. ( 2003;). Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. . Int J Syst Evol Microbiol 53:, 53–57. [CrossRef][PubMed]
    [Google Scholar]
  27. Yoon J. H., Kang S. J., Yi H. S., Oh T. K., Ryu C. M.. ( 2010;). Rhizobium soli sp. nov., isolated from soil. . Int J Syst Evol Microbiol 60:, 1387–1393. [CrossRef][PubMed]
    [Google Scholar]
  28. Young J. M., Kuykendall L. D., Martínez-Romero E., Kerr A., Sawada H.. ( 2001;). A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. . Int J Syst Bacteriol 51:, 89–103.[PubMed]
    [Google Scholar]
  29. Zhang G. X., Ren S. Z., Xu M. Y., Zeng G. Q., Luo H. D., Chen J. L., Tan Z. Y., Sun G. P.. ( 2011;). Rhizobium borbori sp. nov., aniline-degrading bacteria isolated from activated sludge. . Int J Syst Evol Microbiol 61:, 816–822. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.042176-0
Loading
/content/journal/ijsem/10.1099/ijs.0.042176-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error