1887

Abstract

A Gram-negative, aerobic, non-motile, non-spore-forming rod, designated DC-3, was isolated from activated sludge of a wastewater treatment plant in China. Comparative 16S rRNA gene sequence analysis showed that strain DC-3 belonged to the family and formed a lineage within the genus . Strain DC-3 shared the highest 16S rRNA gene sequence similarity with KIS28-6 (97.1 %) and A3 (97.1 %). The G+C content of the genomic DNA was 71.5 mol%. The major respiratory quinone was Q-8 and the major fatty acids were iso-Cω9c (31.6 %), iso-C (12.6 %), iso-C (21.3 %), iso-C (13.1 %) and iso-C 3-OH (6.5 %), which supported the affiliation of strain DC-3 with the genus . DNA–DNA relatedness between strain DC-3 and its closest phylogenetic neighbours was <30 %. The results of physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain DC-3 from the recognized species of the genus . On the basis of its phenotypic properties and phylogenetic distinctiveness, strain DC-3 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is DC-3 ( = CCTCC AB 2011179  = KACC 16511). The description of the genus is also emended.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.041798-0
2013-04-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/4/1519.html?itemId=/content/journal/ijsem/10.1099/ijs.0.041798-0&mimeType=html&fmt=ahah

References

  1. Bernardet J.-F., Nakagawa Y., Holmes B..Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef][PubMed]
    [Google Scholar]
  2. Buck J. D.. ( 1982;). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. . Appl Environ Microbiol 44:, 992–993.[PubMed]
    [Google Scholar]
  3. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W.. ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef][PubMed]
    [Google Scholar]
  4. Collins M. D., Jones D.. ( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. . J Appl Bacteriol 48:, 459–470. [CrossRef]
    [Google Scholar]
  5. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef][PubMed]
    [Google Scholar]
  6. Cunha S., Tiago I., Luísa Pires A., da Costa M. S., Veríssimo A.. ( 2006;). Dokdonella fugitiva sp. nov., a Gammaproteobacterium isolated from potting soil. . Syst Appl Microbiol 29:, 191–196. [CrossRef][PubMed]
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  8. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  9. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  10. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  11. Lane D. L.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. R., Goodfellow M... Chichester, UK:: Wiley;.
    [Google Scholar]
  12. Mandel M., Marmur J.. ( 1968;). Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. . Methods Enzymol 12:, 195–206. [CrossRef]
    [Google Scholar]
  13. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  14. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  15. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual, , 3rd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  16. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  17. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  18. Suzuki T., Yamasato K.. ( 1994;). Phylogeny of spore-forming lactic acid bacteria based on 16S rRNA gene sequences. . FEMS Microbiol Lett 115:, 13–17. [CrossRef][PubMed]
    [Google Scholar]
  19. Tamaoka J., Katayama-Fujimura Y., Kuraishi H.. ( 1983;). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. . J Appl Bacteriol 54:, 31–36. [CrossRef]
    [Google Scholar]
  20. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  21. Ten L. N., Jung H.-M., Im W.-T., Oh H. W., Yang D.-C., Yoo S.-A., Lee S.-T.. ( 2009;). Dokdonella ginsengisoli sp. nov., isolated from soil from a ginseng field, and emended description of the genus Dokdonella. . Int J Syst Evol Microbiol 59:, 1947–1952. [CrossRef][PubMed]
    [Google Scholar]
  22. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  23. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  24. Yoo S.-H., Weon H.-Y., Anandham R., Kim B.-Y., Hong S.-B., Jeon Y.-A., Koo B.-S., Kwon S.-W.. ( 2009;). Dokdonella soli sp. nov., a gammaproteobacterium isolated from soil. . Int J Syst Evol Microbiol 59:, 1965–1968. [CrossRef][PubMed]
    [Google Scholar]
  25. Yoon J.-H., Kang S.-J., Oh T.-K.. ( 2006;). Dokdonella koreensis gen. nov., sp. nov., isolated from soil. . Int J Syst Evol Microbiol 56:, 145–150. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.041798-0
Loading
/content/journal/ijsem/10.1099/ijs.0.041798-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error