1887

Abstract

A thermophilic and hydrogenotrophic methanogen, strain RMAS, was isolated from gas-associated formation water of a gas-producing well in a natural gas field in Japan. Strain RMAS grew solely on H/CO but required Casamino acids, tryptone, yeast extract or vitamins for growth. Growth of strain RMAS was stimulated by acetate. Cells were non-motile, straight rods (0.5×3.5–10.5 µm) and occurred singly or in pairs. Bundles of fimbriae occurred at both poles of cells and the cell wall was thick (approximately 21 nm, as revealed by ultrathin section electron microscopy). Strain RMAS grew at 45–80 °C (optimum, 70 °C), at pH 5.8–8.7 (optimum, pH 6.9–7.7) and with 0.001–20 g NaCl l (optimum, 2.5 g NaCl l). Phylogenetic analysis revealed that ΔH was most closely related to the isolate (95.7 % 16S rRNA gene sequence similarity). On the basis of morphological, phenotypic and phylogenetic characteristics, it is clear that strain RMAS represents a novel species of the genus , for which we propose the name sp. nov. The type strain is RMAS ( = DSM 23052 = JCM 16532 = NBRC 106236).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.041681-0
2013-02-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/2/715.html?itemId=/content/journal/ijsem/10.1099/ijs.0.041681-0&mimeType=html&fmt=ahah

References

  1. Angelini R., Babudri F., Lobasso S., Corcelli A.. ( 2010;). MALDI-TOF/MS analysis of archaebacterial lipids in lyophilized membranes dry-mixed with 9-aminoacridine. . J Lipid Res 51:, 2818–2825. [CrossRef][PubMed]
    [Google Scholar]
  2. Blotevogel K. H., Fischer U.. ( 1985;). Isolation and characterization of a new thermophilic and autotrophic methane producing bacterium: Methanobacterium thermoaggregans spec. nov.. Arch Microbiol 142:, 218–222. [CrossRef]
    [Google Scholar]
  3. Boone D. R.. ( 2000;). Genus I. Methanobacterium. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 1, pp. 215–218. Edited by Boone D. R., Castenholz R. W., Garrity G. M... New York:: Springer;.
    [Google Scholar]
  4. Boone D. R., Whitman W. B., Koga Y.. ( 2001;). Genus IV. Methanothermobacter. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 1, pp. 230–233. Edited by Boone D. R., Castenholz R. W., Garrity G. M... New York:: Springer;. [CrossRef]
    [Google Scholar]
  5. Cheng L., Dai L., Li X., Zhang H., Lu Y.. ( 2011;). Isolation and characterization of Methanothermobacter crinale sp. nov., a novel hydrogenotrophic methanogen from the Shengli oil field. . Appl Environ Microbiol 77:, 5212–5219. [CrossRef][PubMed]
    [Google Scholar]
  6. Ciulla R., Clougherty C., Belay N., Krishnan S., Zhou C., Byrd D., Roberts M. F.. ( 1994;). Halotolerance of Methanobacterium thermoautotrophicum ΔH and Marburg. . J Bacteriol 176:, 3177–3187.[PubMed]
    [Google Scholar]
  7. DeLong E. F.. ( 1992;). Archaea in coastal marine environments. . Proc Natl Acad Sci U S A 89:, 5685–5689. [CrossRef][PubMed]
    [Google Scholar]
  8. Gieg L. M., Davidova I. A., Duncan K. E., Suflita J. M.. ( 2010;). Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields. . Environ Microbiol 12:, 3074–3086. [CrossRef][PubMed]
    [Google Scholar]
  9. Gray N. D., Sherry A., Larter S. R., Erdmann M., Leyris J., Liengen T., Beeder J., Head I. M.. ( 2009;). Biogenic methane production in formation waters from a large gas field in the North Sea. . Extremophiles 13:, 511–519. [CrossRef][PubMed]
    [Google Scholar]
  10. Guindon S., Gascuel O.. ( 2003;). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52:, 696–704. [CrossRef][PubMed]
    [Google Scholar]
  11. Hales B. A., Edwards C., Ritchie D. A., Hall G., Pickup R. W., Saunders J. R.. ( 1996;). Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. . Appl Environ Microbiol 62:, 668–675.[PubMed]
    [Google Scholar]
  12. Hattori S., Kamagata Y., Hanada S., Shoun H.. ( 2000;). Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. . Int J Syst Evol Microbiol 50:, 1601–1609. [CrossRef][PubMed]
    [Google Scholar]
  13. Imachi H., Sakai S., Sekiguchi Y., Hanada S., Kamagata Y., Ohashi A., Harada H.. ( 2008;). Methanolinea tarda gen. nov., sp. nov., a methane-producing archaeon isolated from a methanogenic digester sludge. . Int J Syst Evol Microbiol 58:, 294–301. [CrossRef][PubMed]
    [Google Scholar]
  14. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;.
    [Google Scholar]
  15. Kamagata Y., Mikami E.. ( 1991;). Isolation and characterization of a novel thermophilic Methanosaeta strain. . Int J Syst Bacteriol 41:, 191–196. [CrossRef]
    [Google Scholar]
  16. Keswani J., Whitman W. B.. ( 2001;). Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. . Int J Syst Evol Microbiol 51:, 667–678.[PubMed]
    [Google Scholar]
  17. Koga Y., Morii H., Akagawa Matsushita M., Ohga M.. ( 1998;). Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens. Further analysis of lipid component parts. . Biosci Biotechnol Biochem 62:, 230–236. [CrossRef]
    [Google Scholar]
  18. Kotelnikova S. V., Obraztsova A. Y., Gongadze G. M., Laurinavichius K. S.. ( 1993;). Methanobacterium thermoflexum sp. nov. and Methanobacterium defluvii sp. nov., thermophilic rod-shaped methanogens isolated from anaerobic digester sludge. . Syst Appl Microbiol 16:, 427–435. [CrossRef]
    [Google Scholar]
  19. Laurinavichius K. S., Kotelnikova S. V., Obraztsova A. Y.. ( 1988;). A new species of the thermophilic methane-forming bacterium Methanobacterium thermophilum. . Mikrobiologiya 57:, 1035–1041.
    [Google Scholar]
  20. Li H., Yang S. Z., Mu B. Z., Rong Z. F., Zhang J.. ( 2007;). Molecular phylogenetic diversity of the microbial community associated with a high-temperature petroleum reservoir at an offshore oilfield. . FEMS Microbiol Ecol 60:, 74–84. [CrossRef][PubMed]
    [Google Scholar]
  21. Liesegang H., Kaster A. K., Wiezer A., Goenrich M., Wollherr A., Seedorf H., Gottschalk G., Thauer R. K.. ( 2010;). Complete genome sequence of Methanothermobacter marburgensis, a methanoarchaeon model organism. . J Bacteriol 192:, 5850–5851. [CrossRef][PubMed]
    [Google Scholar]
  22. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  23. Lueders T., Chin K. J., Conrad R., Friedrich M.. ( 2001;). Molecular analyses of methyl-coenzyme M reductase α-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. . Environ Microbiol 3:, 194–204. [CrossRef][PubMed]
    [Google Scholar]
  24. Mayumi D., Mochimaru H., Yoshioka H., Sakata S., Maeda H., Miyagawa Y., Ikarashi M., Takeuchi M., Kamagata Y.. ( 2011;). Evidence for syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis in the high-temperature petroleum reservoir of Yabase oil field (Japan). . Environ Microbiol 13:, 1995–2006. [CrossRef][PubMed]
    [Google Scholar]
  25. Mochimaru H., Yoshioka H., Tamaki H., Nakamura K., Kaneko N., Sakata S., Imachi H., Sekiguchi Y., Uchiyama H., Kamagata Y.. ( 2007;). Microbial diversity and methanogenic potential in a high temperature natural gas field in Japan. . Extremophiles 11:, 453–461. [CrossRef][PubMed]
    [Google Scholar]
  26. Nakamura K., Terada T., Sekiguchi Y., Shinzato N., Meng X. Y., Enoki M., Kamagata Y.. ( 2006;). Application of pseudomurein endoisopeptidase to fluorescence in situ hybridization of methanogens within the family Methanobacteriaceae. . Appl Environ Microbiol 72:, 6907–6913. [CrossRef][PubMed]
    [Google Scholar]
  27. Nakamura K., Tamaki H., Kang M. S., Mochimaru H., Lee S.-T., Nakamura K., Kamagata Y.. ( 2011;). A six-well plate method: less laborious and effective method for cultivation of obligate anaerobic microorganisms. . Microbes Environ 26:, 301–306. [CrossRef][PubMed]
    [Google Scholar]
  28. Nazina T. N., Shestakova N. M., Grigor’yan A. A., Mikhailova E. M., Tourova T. P., Poltaraus A. B., Feng C., Ni F., Belyaev S. S.. ( 2006;). Phylogenetic diversity and activity of anaerobic microorganisms of high-temperature horizons of the Dagang oil field (PR China). . Microbiology 75:, 55–65. [CrossRef]
    [Google Scholar]
  29. Nishihara M., Koga Y.. ( 1987;). Extraction and composition of polar lipids from the archaebacterium, Methanobacterium thermoautotrophicum: effective extraction of tetraether lipids by an acidified solvent. . J Biochem 101:, 997–1005.[PubMed]
    [Google Scholar]
  30. Perski H. J., Moll J., Thauer R. K.. ( 1981;). Sodium dependence of growth and methane formation in Methanobacterium thermoautotrophicum. . Arch Microbiol 130:, 319–321. [CrossRef]
    [Google Scholar]
  31. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O.. ( 2007;). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. . Nucleic Acids Res 35:, 7188–7196. [CrossRef][PubMed]
    [Google Scholar]
  32. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  33. Sakai S., Imachi H., Sekiguchi Y., Ohashi A., Harada H., Kamagata Y.. ( 2007;). Isolation of key methanogens for global methane emission from rice paddy fields: a novel isolate affiliated with the clone cluster rice cluster I. . Appl Environ Microbiol 73:, 4326–4331. [CrossRef][PubMed]
    [Google Scholar]
  34. Schwartz R. M., Dayhoff M. O.. ( 1978;). Matrices for detecting distant relationships. . In Atlas of Protein Sequence and Structure, vol. 5, suppl. 3, pp. 353–358. Edited by Dayhoff M. O... Washington, D.C.:: National Biomedical Research Foundation;
    [Google Scholar]
  35. Sekiguchi Y., Kamagata Y., Nakamura K., Ohashi A., Harada H.. ( 2000;). Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. . Int J Syst Evol Microbiol 50:, 771–779. [CrossRef][PubMed]
    [Google Scholar]
  36. Springer E., Sachs M. S., Woese C. R., Boone D. R.. ( 1995;). Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcrI) as a phylogenetic tool for the family Methanosarcinaceae. . Int J SystBacteriol 45:, 554–559. [CrossRef][PubMed]
    [Google Scholar]
  37. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  38. Takai K., Kobayashi H., Nealson K. H., Horikoshi K.. ( 2003;). Deferribacter desulfuricans sp. nov., a novel sulfur-, nitrate- and arsenate-reducing thermophile isolated from a deep-sea hydrothermal vent. . Int J Syst Evol Microbiol 53:, 839–846. [CrossRef][PubMed]
    [Google Scholar]
  39. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  40. Wasserfallen A., Nölling J., Pfister P., Reeve J., Conway de Macario E.. ( 2000;). Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb.nov., and Methanothermobacter marburgensis sp. nov.. Int J Syst Evol Microbiol 50:, 43–53. [CrossRef][PubMed]
    [Google Scholar]
  41. Winter J., Lerp C., Zabel H. P., Wildenauer F. X., König H., Schindler F.. ( 1984;). Methanobacterium wolfei, sp. nov., a new tungsten-requiring, thermophilic, autotrophic methanogen. . Syst Appl Microbiol 5:, 457–466. [CrossRef]
    [Google Scholar]
  42. Zeikus J. G., Wolfe R. S.. ( 1972;). Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. . J Bacteriol 109:, 707–715.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.041681-0
Loading
/content/journal/ijsem/10.1099/ijs.0.041681-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error