1887

Abstract

A Gram-staining-negative, rod-shaped, non-spore-forming bacterium, designated strain E103, was isolated from the skin of the medical leech . 16S rRNA gene sequence analysis showed that the isolate was closely related to species of the genus DCY36 was shown to be the most closely related (98.4 % 16S rRNA gene sequence similarity), followed by NKNTAU and MJ06 (both 97.8 %), then Ho-11 (97.5 %). Chemotaxonomic data (major ubiquinone, Q-8; major polar lipids, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylserine; predominant polyamine, putrescine with a moderate amount of 2-hydroxyputrescine; and major fatty acids, C cyclo, C and summed feature 4 comprising Cω7 and/or iso-C 2-OH) supported the affiliation of the isolate to the genus . DNA–DNA hybridization values with the type strains of all species of the genus were 23 % (reciprocal, 18 %) with KCTC 22398, 20 % (26 %) with KCTC 22454, 11 % (58 %) with DSM 11046 and 13 % (12 %) with KCTC 12197 Phenotypic differentiation of strain E103 from its closest neighbours was possible. Strain E103 therefore represents a novel species of the genus , for which the name sp. nov. is proposed, with the type strain E103 ( = CCUG 62394 = LMG 26910).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.041392-0
2013-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/2/521.html?itemId=/content/journal/ijsem/10.1099/ijs.0.041392-0&mimeType=html&fmt=ahah

References

  1. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. ( 1978 ). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . . Proc Natl Acad Sci U S A 75, 48014805. [View Article] [PubMed]
    [Google Scholar]
  2. Busse J., Auling G. ( 1988 ). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. . Syst Appl Microbiol 11, 18. [View Article]
    [Google Scholar]
  3. Collins M. D., Jones D. ( 1980 ). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. . J Appl Bacteriol 48, 459470. [View Article]
    [Google Scholar]
  4. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. ( 1977 ). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100, 221230. [View Article] [PubMed]
    [Google Scholar]
  5. Felsenstein J. ( 1985 ). Confidence limits of phylogenies: an approach using the bootstrap. . Evolution 39, 783791. [View Article]
    [Google Scholar]
  6. Felsenstein J. ( 2005 ). phylip (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  7. Foss S., Heyen U., Harder J. ( 1998 ). Alcaligenes defragrans sp. nov., description of four strains isolated on alkenoic monoterpenes ((+)-menthene, α-pinene, 2-carene, and α-phellandrene) and nitrate. . Syst Appl Microbiol 21, 237244. [View Article] [PubMed]
    [Google Scholar]
  8. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) ( 1994 ). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  9. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. ( 1996 ). Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. . Int J Syst Bacteriol 46, 234239. [View Article] [PubMed]
    [Google Scholar]
  10. Jukes T. H., Cantor C. R. ( 1969 ). Evolution of the protein molecules. . In Mammalian Protein Metabolism, pp. 21132. Edited by Munro H. N. . New York:: Academic Press;.
    [Google Scholar]
  11. Kämpfer P., Kroppenstedt R. M. ( 1996 ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42, 9891005. [View Article]
    [Google Scholar]
  12. Kämpfer P., Steiof M., Dott W. ( 1991 ). Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol 21, 227251. [View Article]
    [Google Scholar]
  13. Kämpfer P., Denger K., Cook A. M., Lee S.-T., Jäckel U., Denner E. B. M., Busse H.-J. ( 2006 ). Castellaniella gen. nov., to accommodate the phylogenetic lineage of Alcaligenes defragrans, and proposal of Castellaniella defragrans gen. nov., comb. nov. and Castellaniella denitrificans sp. nov.. Int J Syst Evol Microbiol 56, 815819. [View Article] [PubMed]
    [Google Scholar]
  14. Kim M. K., Srinivasan S., Kim Y.-J., Yang D.-C. ( 2009 ). Castellaniella ginsengisoli sp. nov., a β-glucosidase-producing bacterium. . Int J Syst Evol Microbiol 59, 21912194. [View Article] [PubMed]
    [Google Scholar]
  15. Lane D. J. ( 1991 ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115175. Edited by Stackebrandt E., Goodfellow M. . London:: Wiley;.
    [Google Scholar]
  16. Lee M., Jung H.-M., Woo S.-G., Yoo S.-A., Ten L. N. ( 2010 ). Castellaniella daejeonensis sp. nov., isolated from soil. . Int J Syst Evol Microbiol 60, 20562060. [View Article] [PubMed]
    [Google Scholar]
  17. Liu Q.-M., Ten L. N., Im W.-T., Lee S.-T. ( 2008 ). Castellaniella caeni sp. nov., a denitrifying bacterium isolated from sludge of a leachate treatment plant. . Int J Syst Evol Microbiol 58, 21412146. [View Article] [PubMed]
    [Google Scholar]
  18. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. & other authors ( 2004 ). arb: a software environment for sequence data. . Nucleic Acids Res 32, 13631371. [View Article] [PubMed]
    [Google Scholar]
  19. Minnikin D. E., Collins M. D., Goodfellow M. ( 1979 ). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Bacteriol 47, 8795. [View Article]
    [Google Scholar]
  20. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O. ( 2007 ). silva : a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb . . Nucleic Acids Res 35, 71887196. [View Article] [PubMed]
    [Google Scholar]
  21. Stamatakis A. ( 2006 ). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics 22, 26882690. [View Article] [PubMed]
    [Google Scholar]
  22. Stolz A., Bürger S., Kuhm A., Kämpfer P., Busse H.-J. ( 2005 ). Pusillimonas noertemannii gen. nov., sp. nov., a new member of the family Alcaligenaceae that degrades substituted salicylates. . Int J Syst Evol Microbiol 55, 10771081. [View Article] [PubMed]
    [Google Scholar]
  23. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R. ( 2008 ). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol 31, 241250. [View Article] [PubMed]
    [Google Scholar]
  24. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. ( 1998 ). Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48, 179186. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.041392-0
Loading
/content/journal/ijsem/10.1099/ijs.0.041392-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error