1887

Abstract

A Gram-staining-negative, rod-shaped, non-spore-forming bacterium, designated strain E103, was isolated from the skin of the medical leech . 16S rRNA gene sequence analysis showed that the isolate was closely related to species of the genus DCY36 was shown to be the most closely related (98.4 % 16S rRNA gene sequence similarity), followed by NKNTAU and MJ06 (both 97.8 %), then Ho-11 (97.5 %). Chemotaxonomic data (major ubiquinone, Q-8; major polar lipids, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylserine; predominant polyamine, putrescine with a moderate amount of 2-hydroxyputrescine; and major fatty acids, C cyclo, C and summed feature 4 comprising Cω7 and/or iso-C 2-OH) supported the affiliation of the isolate to the genus . DNA–DNA hybridization values with the type strains of all species of the genus were 23 % (reciprocal, 18 %) with KCTC 22398, 20 % (26 %) with KCTC 22454, 11 % (58 %) with DSM 11046 and 13 % (12 %) with KCTC 12197 Phenotypic differentiation of strain E103 from its closest neighbours was possible. Strain E103 therefore represents a novel species of the genus , for which the name sp. nov. is proposed, with the type strain E103 ( = CCUG 62394 = LMG 26910).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.041392-0
2013-02-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/2/521.html?itemId=/content/journal/ijsem/10.1099/ijs.0.041392-0&mimeType=html&fmt=ahah

References

  1. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F.. ( 1978;). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. . Proc Natl Acad Sci U S A 75:, 4801–4805. [CrossRef][PubMed]
    [Google Scholar]
  2. Busse J., Auling G.. ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  3. Collins M. D., Jones D.. ( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. . J Appl Bacteriol 48:, 459–470. [CrossRef]
    [Google Scholar]
  4. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limits of phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  6. Felsenstein J.. ( 2005;). phylip (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  7. Foss S., Heyen U., Harder J.. ( 1998;). Alcaligenes defragrans sp. nov., description of four strains isolated on alkenoic monoterpenes ((+)-menthene, α-pinene, 2-carene, and α-phellandrene) and nitrate. . Syst Appl Microbiol 21:, 237–244. [CrossRef][PubMed]
    [Google Scholar]
  8. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. (editors) ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  9. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A.. ( 1996;). Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. . Int J Syst Bacteriol 46:, 234–239. [CrossRef][PubMed]
    [Google Scholar]
  10. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of the protein molecules. . In Mammalian Protein Metabolism, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;.
    [Google Scholar]
  11. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  12. Kämpfer P., Steiof M., Dott W.. ( 1991;). Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol 21:, 227–251. [CrossRef]
    [Google Scholar]
  13. Kämpfer P., Denger K., Cook A. M., Lee S.-T., Jäckel U., Denner E. B. M., Busse H.-J.. ( 2006;). Castellaniella gen. nov., to accommodate the phylogenetic lineage of Alcaligenes defragrans, and proposal of Castellaniella defragrans gen. nov., comb. nov. and Castellaniella denitrificans sp. nov.. Int J Syst Evol Microbiol 56:, 815–819. [CrossRef][PubMed]
    [Google Scholar]
  14. Kim M. K., Srinivasan S., Kim Y.-J., Yang D.-C.. ( 2009;). Castellaniella ginsengisoli sp. nov., a β-glucosidase-producing bacterium. . Int J Syst Evol Microbiol 59:, 2191–2194. [CrossRef][PubMed]
    [Google Scholar]
  15. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... London:: Wiley;.
    [Google Scholar]
  16. Lee M., Jung H.-M., Woo S.-G., Yoo S.-A., Ten L. N.. ( 2010;). Castellaniella daejeonensis sp. nov., isolated from soil. . Int J Syst Evol Microbiol 60:, 2056–2060. [CrossRef][PubMed]
    [Google Scholar]
  17. Liu Q.-M., Ten L. N., Im W.-T., Lee S.-T.. ( 2008;). Castellaniella caeni sp. nov., a denitrifying bacterium isolated from sludge of a leachate treatment plant. . Int J Syst Evol Microbiol 58:, 2141–2146. [CrossRef][PubMed]
    [Google Scholar]
  18. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  19. Minnikin D. E., Collins M. D., Goodfellow M.. ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Bacteriol 47:, 87–95. [CrossRef]
    [Google Scholar]
  20. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O.. ( 2007;). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. . Nucleic Acids Res 35:, 7188–7196. [CrossRef][PubMed]
    [Google Scholar]
  21. Stamatakis A.. ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics 22:, 2688–2690. [CrossRef][PubMed]
    [Google Scholar]
  22. Stolz A., Bürger S., Kuhm A., Kämpfer P., Busse H.-J.. ( 2005;). Pusillimonas noertemannii gen. nov., sp. nov., a new member of the family Alcaligenaceae that degrades substituted salicylates. . Int J Syst Evol Microbiol 55:, 1077–1081. [CrossRef][PubMed]
    [Google Scholar]
  23. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. ( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol 31:, 241–250. [CrossRef][PubMed]
    [Google Scholar]
  24. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R.. ( 1998;). Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48:, 179–186. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.041392-0
Loading
/content/journal/ijsem/10.1099/ijs.0.041392-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error