1887

Abstract

A novel thermophilic bacterium, strain Kam1851, was isolated from a terrestrial hot spring of the Uzon Caldera, Kamchatka Peninsula, Russia. Cells of strain Kam1851 were spore-forming rods with a Gram-positive type of cell wall. Growth was observed between 46 and 78 °C, and pH 5.5–8.5. The optimal growth (doubling time, 6.0 h) was at 60–65 °C and pH 6.5. The isolate was an obligate anaerobe growing in pre-reduced medium only. It grew on mineral medium with molecular hydrogen or formate as electron donors, and elemental sulfur, thiosulfate or polysulfide as electron acceptors. The main cellular fatty acids were C (34.2 %), iso-C (18 %), C (12.8 %) and iso-C (11.1 %). The G+C content of the genomic DNA of strain Kam1851 was 63 mol%. 16S rRNA gene sequence analysis showed that strain Kam1851 belonged to the order , but it was not closely related to representatives of any genera with validly published names. The most closely related strains, which had no more than 89.2 % sequence similarity, were members of the genera and . On the basis of its phylogenetic position and novel phenotypic features, isolate Kam1851 is proposed to represent a novel species in a new genus, gen. nov., sp. nov.; the type strain of is Kam1851 ( = DSM 22653 = VKM B-2685).

Funding
This study was supported by the:
  • Federal Ministry of Education and Science program ‘Kadry’ (Award П646 and П2283)
  • Russian Academy of Sciences programs ‘Molecular and Cell Biology’ and ‘Origin and Evolution of the Biosphere’
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.041285-0
2013-02-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/2/479.html?itemId=/content/journal/ijsem/10.1099/ijs.0.041285-0&mimeType=html&fmt=ahah

References

  1. Alm E. W., Oerther D. B., Larsen N., Stahl D. A., Raskin L. ( 1996 ). The oligonucleotide probe database. . Appl Environ Microbiol 62, 35573559.[PubMed]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. ( 1990 ). Basic local alignment search tool. . J Mol Biol 215, 403410.[PubMed] [CrossRef]
    [Google Scholar]
  3. Bonch-Osmolovskaya E. A., Sokolova T. G., Kostrikina N. A., Zavarzin G. A. ( 1990 ). Desulfurella acetivorans gen. nov. and sp. nov. – a new thermophilic sulfur-reducing eubacterium. . Arch Microbiol 153, 151155. [View Article]
    [Google Scholar]
  4. Bonch-Osmolovskaya E. A., Miroshnichenko M. L., Slobodkin A. I., Sokolova T. G., Karpov G. A., Kostrikina N. A., Zavarzina D. G., Prokofeva M. I., Rusanov I. I., Pimenov N. V. ( 1999 ). Biodiversity of anaerobic lithotrophic prokaryotes in terrestrial hot springs of Kamchatka. . Microbiology (English translation of Microbiologiia) 68, 398406.
    [Google Scholar]
  5. DeLong E. F. ( 1992 ). Archaea in coastal marine environments. . Proc Natl Acad Sci U S A 89, 56855689. [View Article] [PubMed]
    [Google Scholar]
  6. Felsenstein J. ( 1985 ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39, 783791. [View Article]
    [Google Scholar]
  7. Gonzalez J. M., Saiz-Jimenez C. A. ( 2002 ). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4, 770773. [View Article] [PubMed]
    [Google Scholar]
  8. Guckert J. B., Antworth C. P., Nichols P. D., White D. C. ( 1985 ). Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. . FEMS Microbiol Ecol 31, 147158. [CrossRef]
    [Google Scholar]
  9. Huber R. ( 2009 ). Genus II. Ammonifex . . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 3, pp. 12401241. Edited by Boone D. R., Castenholz R. W., Garrity G. M. . New York, NY:: Springer;.
    [Google Scholar]
  10. Huber R., Rossnagel P., Woese C. R., Rachel R., Langworthy T. A., Stetter K. O. ( 1996 ). Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium Ammonifex degensii gen. nov. sp. nov.. Syst Appl Microbiol 19, 4049. [View Article] [PubMed]
    [Google Scholar]
  11. Kaksonen A. H., Spring S., Schumann P., Kroppenstedt R. M., Puhakka J. A. ( 2007 ). Desulfovirgula thermocuniculi gen. nov., sp. nov., a thermophilic sulfate-reducer isolated from a geothermal underground mine in Japan. . Int J Syst Evol Microbiol 57, 98102. [View Article] [PubMed]
    [Google Scholar]
  12. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H. & other authors ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [View Article] [PubMed]
    [Google Scholar]
  13. Marmur J., Doty P. ( 1962 ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5, 109118. [View Article] [PubMed]
    [Google Scholar]
  14. Miroshnichenko M. L., Rainey F. A., Hippe H., Chernyh N. A., Kostrikina N. A., Bonch-Osmolovskaya E. A. ( 1998 ). Desulfurella kamchatkensis sp. nov. and Desulfurella propionica sp. nov., new sulfur-respiring thermophilic bacteria from Kamchatka thermal environments. . Int J Syst Bacteriol 48, 475479. [View Article] [PubMed]
    [Google Scholar]
  15. Miroshnichenko M. L., Tourova T. P., Kolganova T. V., Kostrikina N. A., Chernych N., Bonch-Osmolovskaya E. A. ( 2008 ). Ammonifex thiophilus sp. nov., a hyperthermophilic anaerobic bacterium from a Kamchatka hot spring. . Int J Syst Evol Microbiol 58, 29352938. [View Article] [PubMed]
    [Google Scholar]
  16. Miroshnichenko M. L., Lebedinsky A. V., Chernyh N. A., Tourova T. P., Kolganova T. V., Spring S., Bonch-Osmolovskaya E. A. ( 2009 ). Caldimicrobium rimae gen. nov., sp. nov., an extremely thermophilic, facultatively lithoautotrophic, anaerobic bacterium from the Uzon Caldera, Kamchatka. . Int J Syst Evol Microbiol 59, 10401044. [View Article] [PubMed]
    [Google Scholar]
  17. Mori K., Hanada S., Maruyama A., Marumo K. ( 2002 ). Thermanaeromonas toyohensis gen. nov., sp. nov., a novel thermophilic anaerobe isolated from a subterranean vein in the Toyoha Mines. . Int J Syst Evol Microbiol 52, 16751680. [View Article] [PubMed]
    [Google Scholar]
  18. O’Neill A. H., Liu Y., Ferrera I., Beveridge T. J., Reysenbach A.-L. ( 2008 ). Sulfurihydrogenibium rodmanii sp. nov., a sulfur-oxidizing chemolithoautotroph from the Uzon Caldera, Kamchatka Peninsula, Russia, and emended description of the genus Sulfurihydrogenibium . . Int J Syst Evol Microbiol 58, 11471152. [View Article] [PubMed]
    [Google Scholar]
  19. Perevalova A. A., Svetlichny V. A., Kublanov I. V., Chernyh N. A., Kostrikina N. A., Tourova T. P., Kuznetsov B. B., Bonch-Osmolovskaya E. A. ( 2005 ). Desulfurococcus fermentans sp. nov., a novel hyperthermophilic archaeon from a Kamchatka hot spring, and emended description of the genus Desulfurococcus . . Int J Syst Evol Microbiol 55, 995999. [View Article] [PubMed]
    [Google Scholar]
  20. Pfennig N., Lippert K. D. ( 1966 ). Über das vitamin B12-Bedürfnis phototropher Schwefelbakterien. . Arch Mikrobiol 55, 245256. (in German). [View Article]
    [Google Scholar]
  21. Pimenov N. V., Bonch-Osmolovskaya E. A. ( 2006 ). In situ activities in thermal environments. . Methods Microbiol 35, 2953.
    [Google Scholar]
  22. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  23. Sokolova T. G., Henstra A.-M., Sipma J., Parshina S. N., Stams A. J. M., Lebedinsky A. V. ( 2009 ). Diversity and ecophysiological features of thermophilic carboxydotrophic anaerobes. . FEMS Microbiol Ecol 68, 131141. [View Article] [PubMed]
    [Google Scholar]
  24. Tamura K., Nei M., Kumar S. ( 2004 ). Prospects for inferring very large phylogenies by using the neighbor-joining method. . Proc Natl Acad Sci U S A 101, 1103011035. [View Article] [PubMed]
    [Google Scholar]
  25. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [View Article] [PubMed]
    [Google Scholar]
  26. Trüper H. G., Schlegel H. G. ( 1964 ). Sulfur metabolism in Thiorhodoceae. Quantitative measurements on growing cells of Chromatium okenii . . Antonie van Leeuwenhoek 30, 225228. [CrossRef]
    [Google Scholar]
  27. White D. C., Davis W. M., Nickels J. S., King J. D., Bobbie R. J. ( 1979 ). Determination of the sedimentary microbial biomass by extractable lipid phosphate. . Oecologia 40, 5162. [View Article]
    [Google Scholar]
  28. Wiegel J. ( 2009 ). Order III. Thermoanaerobacterales ord. nov.. In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 3, pp. 12241317. Edited by Boone D. R., Castenholz R. W., Garrity G. M. . New York, NY:: Springer;.
    [Google Scholar]
  29. Zhang C. L., Li Y., Ye Q., Fong J., Peacock A. D., Blunt E., Fang J., Lovley D. R., White D. C. ( 2003 ). Carbon isotope signatures of fatty acids in Geobacter metallireducens and Shewanella algae . . Chem Geol 195, 1728. [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.041285-0
Loading
/content/journal/ijsem/10.1099/ijs.0.041285-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error