1887

Abstract

A novel, Gram-staining-negative, non-pigmented, rod-shaped, strictly aerobic, extremely halophilic bacterium, designated strain IA16, was isolated from the mud of the hypersaline Lake Aran-Bidgol, in Iran. Cells of strain IA16 were not motile. Growth occurred with 2.5–5.2 M NaCl (optimum 3.4 M), at pH 6.0–8.0 (optimum pH 7.0) and at 30–50 °C (optimum 40 °C). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain IA16 belonged in the family and that its closest relatives were DSM 9895 (91.6 % sequence similarity), NCIMB 2243 (91.2 %), CL-UU02 (88.9 %) and YIM D82 (88.7 %). The novel strain’s major cellular fatty acids were C cyclo ω7 and C and its polar lipid profile comprised phosphatidylglycerol, diphosphatidylglycerol, four unidentified phospholipids, three unidentified aminolipids and two other unidentified lipids. The cells of strain IA16 contained the ubiquinone Q-10. The G+C content of the novel strain’s genomic DNA was 67.0 mol%. The physiological, biochemical and phylogenetic differences between strain IA16 and other previously described taxa indicate that the strain represents a novel species in a new genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is IA16 ( = IBRC-M 10018  = DSM 25584).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.041236-0
2013-04-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/4/1562.html?itemId=/content/journal/ijsem/10.1099/ijs.0.041236-0&mimeType=html&fmt=ahah

References

  1. Allgaier M., Uphoff H., Felske A., Wagner-Döbler I.. ( 2003;). Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats. . Appl Environ Microbiol 69:, 5051–5059. [CrossRef][PubMed]
    [Google Scholar]
  2. Anil Kumar P., Srinivas T. N. R., Takaichi S., Maoka T., Sasikala Ch., Ramana Ch. V.. ( 2009;). Phaeospirillum chandramohanii sp. nov., a phototrophic alphaproteobacterium with carotenoid glycosides. . Int J Syst Evol Microbiol 59:, 2089–2093. [CrossRef][PubMed]
    [Google Scholar]
  3. Balch W. E., Wolfe R. S.. ( 1976;). New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. . Appl Environ Microbiol 32:, 781–791.[PubMed]
    [Google Scholar]
  4. Bryant M. P.. ( 1972;). Commentary on the Hungate technique for culture of anaerobic bacteria. . Am J Clin Nutr 25:, 1324–1328.[PubMed]
    [Google Scholar]
  5. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  6. Choi D. H., Hwang C. Y., Cho B. C.. ( 2009;). Pelagibius litoralis gen. nov., sp. nov., a marine bacterium in the family Rhodospirillaceae isolated from coastal seawater. . Int J Syst Evol Microbiol 59:, 818–823. [CrossRef][PubMed]
    [Google Scholar]
  7. Coenye T., Goris J., Spilker T., Vandamme P., LiPuma J. J.. ( 2002;). Characterization of unusual bacteria isolated from respiratory secretions of cystic fibrosis patients and description of Inquilinus limosus gen. nov., sp. nov.. J Clin Microbiol 40:, 2062–2069. [CrossRef][PubMed]
    [Google Scholar]
  8. Cohen-Bazire G., Sistrom W. R., Stanier R. Y.. ( 1957;). Kinetic studies of pigment synthesis by nonsulfur purple bacteria. . J Cell Comp Physiol 49:, 25–68. [CrossRef]
    [Google Scholar]
  9. Dussault H. P.. ( 1955;). An improved technique for staining red halophilic bacteria. . J Bacteriol 70:, 484–485.[PubMed]
    [Google Scholar]
  10. Dyall-Smith M.. ( 2008;). The Halohandbook: protocols for haloarchaeal genetics. . http://www.haloarchaea.com/resources/halohandbook.
  11. Embley T. M., Wait R.. ( 1994;). Structural lipids of Eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 141–147. Edited by Goodfellow M., O’Donnell A. G... New York:: Wiley;.
    [Google Scholar]
  12. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  13. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  14. Garrity G. M., Bell J. A., Lilburn T.. ( 2005;). Order I. Rhodospirillales Pfennig and Trüper 1971, 17AL. In Bergey’s Manual of Systematic Bacteriology, 2nd edn, vol. 2, The Proteobacteria, part C, The Alpha-, Beta-, Delta-, and Epsilonproteobacteria, pp. 1–95. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York:: Springer;.
  15. González C., Gutiérrez C., Ramírez C.. ( 1978;). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. . Can J Microbiol 24:, 710–715. [CrossRef][PubMed]
    [Google Scholar]
  16. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A.. ( 1996;). Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. . Int J Syst Bacteriol 46:, 234–239. [CrossRef][PubMed]
    [Google Scholar]
  17. Gutiérrez C., González C.. ( 1972;). Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. . Appl Microbiol 24:, 516–517.[PubMed]
    [Google Scholar]
  18. Imhoff J. F., Petri R., Suling J.. ( 1998;). Reclassification of species of the spiral-shaped phototrophic purple non-sulfur bacteria of the α-Proteobacteria: description of the new genera Phaeospirillum gen. nov., Rhodovibrio gen. nov., Rhodothalassium gen. nov. and Roseospira gen. nov. as well as transfer of Rhodospirillum fulvum to Phaeospirillum fulvum comb. nov., of Rhodospirilllum molischianum to Phaeospirillum molischianum comb. nov., of Rhodospirilium salinarum to Rhodovibrio salinarum comb. nov., of Rhodospirillum sodomense to Rhodovibrio sodomensis comb. nov., of Rhodospirillum salexigens to Rhodothalassium salexigens comb. nov. and of Rhodospirillum mediosalinum to Roseospira mediosalina comb. nov.. Int J Syst Bacteriol 48:, 793–798. [CrossRef][PubMed]
    [Google Scholar]
  19. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  20. Kodama Y., Stiknowati L. I., Ueki A., Ueki K., Watanabe K.. ( 2008;). Thalassospira tepidiphila sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from seawater. . Int J Syst Evol Microbiol 58:, 711–715. [CrossRef][PubMed]
    [Google Scholar]
  21. Labrenz M., Tindall B. J., Lawson P. A., Collins M. D., Schumann P., Hirsch P.. ( 2000;). Staleya guttiformis gen. nov., sp. nov. and Sulfitobacter brevis sp. nov., α-3-Proteobacteria from hypersaline, heliothermal and meromictic antarctic Ekho Lake. . Int J Syst Evol Microbiol 50:, 303–313. [CrossRef][PubMed]
    [Google Scholar]
  22. Lai Q., Yuan J., Gu L., Shao Z.. ( 2009a;). Marispirillum indicum gen. nov., sp. nov., isolated from a deep-sea environment. . Int J Syst Evol Microbiol 59:, 1278–1281. [CrossRef][PubMed]
    [Google Scholar]
  23. Lai Q., Yuan J., Wu C., Shao Z.. ( 2009b;). Oceanibaculum indicum gen. nov., sp. nov., isolated from deep seawater of the Indian Ocean. . Int J Syst Evol Microbiol 59:, 1733–1737. [CrossRef][PubMed]
    [Google Scholar]
  24. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R.. ( 1985;). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. . Proc Natl Acad Sci U S A 82:, 6955–6959. [CrossRef][PubMed]
    [Google Scholar]
  25. Liu M., Dai J., Liu Y., Cai F., Wang Y., Rahman E., Fang C.. ( 2011;). Desertibacter roseus gen. nov., sp. nov., a gamma radiation-resistant bacterium in the family Rhodospirillaceae, isolated from desert sand. . Int J Syst Evol Microbiol 61:, 1109–1113. [CrossRef][PubMed]
    [Google Scholar]
  26. Mack E. E., Mandelco L., Woese C. R., Madigan M. T.. ( 1993;). Rhodospirillum sodomense, sp. nov., a Dead Sea Rhodospirillum species. . Arch Microbiol 160:, 363–371. [CrossRef]
    [Google Scholar]
  27. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  28. Minnikin D. E., Collins M. D., Goodfellow M.. ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Bacteriol 47:, 87–95. [CrossRef]
    [Google Scholar]
  29. Oren A., Ventosa A., Grant W. D.. ( 1997;). Proposed minimal standards for description of new taxa in the order Halobacteriales. . Int J Syst Bacteriol 47:, 233–238. [CrossRef]
    [Google Scholar]
  30. Pfennig N., Trüper H. G.. ( 1971;). Higher taxa of the phototrophic bacteria. . Int J Syst Bacteriol 21:, 17–18. [CrossRef]
    [Google Scholar]
  31. Pfennig N., Lünsdorf H., Süling J., Imhoff J. F.. ( 1997;). Rhodospira trueperi gen. nov., spec. nov., a new phototrophic Proteobacterium of the alpha group. . Arch Microbiol 168:, 39–45. [CrossRef][PubMed]
    [Google Scholar]
  32. Ritika C., Suresh K., Anil Kumar P.. ( 2012;). Caenispirillum salinarum sp. nov., a member of the family Rhodospirillaceae isolated from a solar saltern. . Int J Syst Evol Microbiol 62:, 1698–1702. [CrossRef][PubMed]
    [Google Scholar]
  33. Rzhetsky A., Nei M.. ( 1992;). A simple method for estimating and testing minimum-evolution trees. . Mol Biol Evol 9:, 945–967.
    [Google Scholar]
  34. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  35. Shi B. H., Arunpairojana V., Palakawong S., Yokota A.. ( 2002;). Tistrella mobilis gen nov, sp nov, a novel polyhydroxyalkanoate-producing bacterium belonging to α-Proteobacteria. . J Gen Appl Microbiol 48:, 335–343. [CrossRef][PubMed]
    [Google Scholar]
  36. Skerman V. B. D., Sly L. I., Williamson M. L.. ( 1983;). Conglomeromonas largomobilis gen. nov., sp. nov., a sodium-sensitive, mixed-flagellated organism from fresh waters. . Int J Syst Bacteriol 33:, 300–308. [CrossRef]
    [Google Scholar]
  37. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  38. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  39. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  40. Urios L., Michotey V., Intertaglia L., Lesongeur F., Lebaron P.. ( 2008;). Nisaea denitrificans gen. nov., sp. nov. and Nisaea nitritireducens sp. nov., two novel members of the class Alphaproteobacteria from the Mediterranean Sea. . Int J Syst Evol Microbiol 58:, 2336–2341. [CrossRef][PubMed]
    [Google Scholar]
  41. Wang Y. X., Liu J. H., Zhang X. X., Chen Y. G., Wang Z. G., Chen Y., Li Q. Y., Peng Q., Cui X. L.. ( 2009;). Fodinicurvata sediminis gen. nov., sp. nov. and Fodinicurvata fenggangensis sp. nov., poly-β-hydroxybutyrate-producing bacteria in the family Rhodospirillaceae. . Int J Syst Evol Microbiol 59:, 2575–2581. [CrossRef][PubMed]
    [Google Scholar]
  42. Weon H. Y., Kim B. Y., Hong S. B., Joa J. H., Nam S. S., Lee K. H., Kwon S. W.. ( 2007;). Skermanella aerolata sp. nov., isolated from air, and emended description of the genus Skermanella. . Int J Syst Evol Microbiol 57:, 1539–1542. [CrossRef][PubMed]
    [Google Scholar]
  43. Yamada K., Fukuda W., Kondo Y., Miyoshi Y., Atomi H., Imanaka T.. ( 2011;). Constrictibacter antarcticus gen. nov., sp. nov., a cryptoendolithic micro-organism from Antarctic white rock. . Int J Syst Evol Microbiol 61:, 1973–1980. [CrossRef][PubMed]
    [Google Scholar]
  44. Zhang G. I., Hwang C. Y., Cho B. C.. ( 2008;). Thalassobaculum litoreum gen. nov., sp. nov., a member of the family Rhodospirillaceae isolated from coastal seawater. . Int J Syst Evol Microbiol 58:, 479–485. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.041236-0
Loading
/content/journal/ijsem/10.1099/ijs.0.041236-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error