1887

Abstract

Four orange-pigmented isolates, L7-456, L7-484, L9-479 and L9-753, originating from surface-sterilized leaf tissues of L. cultivars were characterized using a polyphasic taxonomic approach. Phylogenetic analyses based on 16S rRNA gene sequences indicated that all four isolates belong to the genus . In these analyses, strain L7-484 appeared to be most closely related to 5715S-12 (95.7 % sequence identity). The 16S rRNA gene sequences of strains L7-456, L9-479 and L9-753 were found to be identical and also shared the highest similarity with 5715S-12 (97.5 %). Both L7-484 and L9-753 contained Q-10 and Q-9 as predominant ubiquinones and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidyldimethylethanolamine, sulfoquinovosyldiacylglycerol and an aminophospholipid as the major polar lipids. Cω7 and C were the major fatty acids. Similar to other species in the genus , hydroxylated fatty acids (e.g. C 2-OH) and cyclic fatty acids (C cyclo ω8) were also present. The DNA G+C contents of L7-484 and L9-753 were 66.1 and 69.4 mol%, respectively. Strains L7-484 and L9-753 exhibited less than 40 % DNA–DNA hybridization both between themselves and to KACC 11607. Our results support the proposal that strain L7-484 represents a novel species within the genus , for which the name sp. nov. is proposed, and that strains L9-753, L7-456 ( = KACC 16229  = DSM 25023) and L9-479 ( = KACC 16228  = DSM 25024) represent a second novel species within the genus, for which the name sp. nov. is proposed. The type strains of sp. nov. and sp. nov. are respectively L7-484 ( = KACC 16230  = DSM 25025) and L9-753 ( = KACC 16231  = DSM 25026).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.041020-0
2013-05-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/5/1702.html?itemId=/content/journal/ijsem/10.1099/ijs.0.041020-0&mimeType=html&fmt=ahah

References

  1. Anda M., Ikeda S., Eda S., Okubo T., Sato S., Tabata S., Mitsui H., Minamisawa K.. ( 2011;). Isolation and genetic characterization of Aurantimonas and Methylobacterium strains from stems of hypernodulated soybeans. . Microbes Environ 26:, 172–180. [CrossRef][PubMed]
    [Google Scholar]
  2. Barac T., Taghavi S., Borremans B., Provoost A., Oeyen L., Colpaert J. V., Vangronsveld J., van der Lelie D.. ( 2004;). Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. . Nat Biotechnol 22:, 583–588. [CrossRef][PubMed]
    [Google Scholar]
  3. DeLong E. F.. ( 1992;). Archaea in coastal marine environments. . Proc Natl Acad Sci U S A 89:, 5685–5689. [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  6. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  7. Ikeda S., Okubo T., Kaneko T., Inaba S., Maekawa T., Eda S., Sato S., Tabata S., Mitsui H., Minamisawa K.. ( 2010a;). Community shifts of soybean stem-associated bacteria responding to different nodulation phenotypes and N levels. . ISME J 4:, 315–326. [CrossRef][PubMed]
    [Google Scholar]
  8. Ikeda S., Okubo T., Anda M., Nakashita H., Yasuda M., Sato S., Kaneko T., Tabata S., Eda S.. & other authors ( 2010b;). Community- and genome-based views of plant-associated bacteria: plant-bacterial interactions in soybean and rice. . Plant Cell Physiol 51:, 1398–1410. [CrossRef][PubMed]
    [Google Scholar]
  9. Ikeda S., Anda M., Inaba S., Eda S., Sato S., Sasaki K., Tabata S., Mitsui H., Sato T.. & other authors ( 2011;). Autoregulation of nodulation interferes with impacts of nitrogen fertilization levels on the leaf-associated bacterial community in soybeans. . Appl Environ Microbiol 77:, 1973–1980. [CrossRef][PubMed]
    [Google Scholar]
  10. Jurado V., Gonzalez J. M., Laiz L., Saiz-Jimenez C.. ( 2006;). Aurantimonas altamirensis sp. nov., a member of the order Rhizobiales isolated from Altamira Cave. . Int J Syst Evol Microbiol 56:, 2583–2585. [CrossRef][PubMed]
    [Google Scholar]
  11. Kim M. S., Hoa K. T. Q., Baik K. S., Park S. C., Seong C. N.. ( 2008;). Aurantimonas frigidaquae sp. nov., isolated from a water-cooling system. . Int J Syst Evol Microbiol 58:, 1142–1146. [CrossRef][PubMed]
    [Google Scholar]
  12. Kim B. C., Poo H., Lee K. H., Kim M. N., Kwon O. Y., Shin K. S.. ( 2012a;). Mucilaginibacter angelicae sp. nov., isolated from the rhizosphere of Angelica polymorpha Maxim. . Int J Syst Evol Microbiol 62:, 55–60. [CrossRef][PubMed]
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012b;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  14. Kumar S., Tamura K., Nei M.. ( 2004;). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. . Brief Bioinform 5:, 150–163. [CrossRef][PubMed]
    [Google Scholar]
  15. Mano H., Tanaka F., Nakamura C., Kaga H., Morisaki H.. ( 2007;). Culturable endophytic bacterial flora of the maturing leaves and roots of rice plants (Oryza sativa) cultivated in a paddy field. . Microbes Environ 22:, 175–185. [CrossRef]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  17. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal K., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  18. Rathsack K., Reitner J., Stackebrandt E., Tindall B. J.. ( 2011;). Reclassification of Aurantimonas altamirensis (Jurado et al. 2006), Aurantimonas ureilytica (Weon et al. 2007) and Aurantimonas frigidaquae (Kim et al. 2008) as members of a new genus, Aureimonas gen. nov., as Aureimonas altamirensis gen. nov., comb. nov., Aureimonas ureilytica comb. nov. and Aureimonas frigidaquae comb. nov., and emended descriptions of the genera Aurantimonas and Fulvimarina. . Int J Syst Evol Microbiol 61:, 2722–2728. [CrossRef][PubMed]
    [Google Scholar]
  19. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  20. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc.;
  21. Seldin L., Dubnau D.. ( 1985;). Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. . Int J Syst Bacteriol 35:, 151–154. [CrossRef]
    [Google Scholar]
  22. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  23. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  24. Weon H.-Y., Kim B.-Y., Yoo S.-H., Joa J.-H., Lee K. H., Zhang Y.-S., Kwon S.-W., Koo B.-S.. ( 2007;). Aurantimonas ureilytica sp. nov., isolated from an air sample. . Int J Syst Evol Microbiol 57:, 1717–1720. [CrossRef][PubMed]
    [Google Scholar]
  25. Wilson K.. ( 1987;). Preparation of genomic DNA from bacteria. . In Current Protocols in Molecular Biology, pp. 2.4.1–2.4.5. Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K... New York:: Green Publishing & Wiley-Interscience;.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.041020-0
Loading
/content/journal/ijsem/10.1099/ijs.0.041020-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error