1887

Abstract

A Gram-negative, rod-shaped, non-spore-forming bacterium, designated SgZ-1, was isolated from the anode biofilm of a microbial fuel cell. The strain had the ability to grow under anaerobic condition via the oxidation of various organic compounds coupled to the reduction of anthraquione-2,6-disulfonate (AQDS) to anthrahydroquinone-2,6-disulfonate (AHQDS). Growth occurred in TSB in the presence of 0–5.5 % (w/v) NaCl (optimum 0–1 %), at 10–45 °C (optimum 25–37 °C) and at pH 6.0–10.0 (optimum 8.0–8.5). Based on 16S rRNA gene sequence similarity, strain SgZ-1 belonged to the genus . The highest level of 16S rRNA gene sequences similarity (96.7 %) was found to be with S and AX, and lower values were obtained when compared with other recognized species. Chemotaxonomic analysis revealed that strain SgZ-1 contained Q-8 as the predominant quinone, and putrescine and 2-hydroxyputrescine as the major polyamines. The major cellular fatty acids (>5 %) were Cω6 and/or Cω7 (44.6 %), C (18.8 %), and Cω6 and/or Cω7 (12.7 %). Based on its phenotypic and phylogenetic properties, chemotaxonomic analysis and the results of physiological and biochemical tests, strain SgZ-1 ( = KACC 16524 = CCTCC M 2011497) was designated the type strain of a novel species of the genus , for which the name sp. nov. was proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.040956-0
2013-03-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/3/873.html?itemId=/content/journal/ijsem/10.1099/ijs.0.040956-0&mimeType=html&fmt=ahah

References

  1. Anders H. J., Kaetzke A., Kämpfer P., Ludwig W., Fuchs G.. ( 1995;). Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. . Int J Syst Bacteriol 45:, 327–333. [CrossRef][PubMed]
    [Google Scholar]
  2. Baker G. C., Smith J. J., Cowan D. A.. ( 2003;). Review and re-analysis of domain-specific 16S primers. . J Microbiol Methods 55:, 541–555. [CrossRef][PubMed]
    [Google Scholar]
  3. Breznak J. A., Costilow R. N.. ( 1994;). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, pp. 137–154. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  4. Buck J. D.. ( 1982;). Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. . Appl Environ Microbiol 44:, 992–993.[PubMed]
    [Google Scholar]
  5. Busse H.-J., Auling G.. ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  6. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W.. ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef][PubMed]
    [Google Scholar]
  7. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef][PubMed]
    [Google Scholar]
  8. De Mey E. D., Drabik-Markiewicz G., Maere H. D., Peeters M. C., Derdelinckx G., Paelinck H., Kowalska T.. ( 2012;). Dabsyl derivatisation as an alternative for dansylation in the detection of biogenic amines in fermented meat products by reversed phase high performance liquid chromatography. . Food Chem 130:, 1017–1023. [CrossRef]
    [Google Scholar]
  9. Dubbels B. L., Sayavedra-Soto L. A., Bottomley P. J., Arp D. J.. ( 2009;). Thauera butanivorans sp. nov., a C2–C9 alkane-oxidizing bacterium previously referred to as ‘Pseudomonas butanovora’. . Int J Syst Evol Microbiol 59:, 1576–1578. [CrossRef][PubMed]
    [Google Scholar]
  10. Eck R. V., Dayhoff M. O.. ( 1966;). Atlas of Protein Sequence and Structure. Silver Springs, MD:: National Biomedical Research Foundation;.
    [Google Scholar]
  11. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  12. Field J. A., Cervantes F. J.. ( 2005;). Microbial redox reactions mediated by humus and structurally related quinones. . In Use of Humic Substances to Remediate Polluted Environments: from Theory to Practice, pp. 343–352. Edited by Perminova I. V., Hatfield K., Hertkorn N... [CrossRef]
    [Google Scholar]
  13. Foss S., Harder J.. ( 1998;). Thauera linaloolentis sp. nov. and Thauera terpenica sp. nov., isolated on oxygen-containing monoterpenes (linalool, menthol, and eucalyptol) nitrate. . Syst Appl Microbiol 21:, 365–373. [CrossRef][PubMed]
    [Google Scholar]
  14. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  15. Li X. M., Zhou S. G., Li F. B., Wu C. Y., Zhuang L., Xu W., Liu L.. ( 2009;). Fe(III) oxide reduction and carbon tetrachloride dechlorination by a newly isolated Klebsiella pneumoniae strain L17. . J Appl Microbiol 106:, 130–139. [CrossRef][PubMed]
    [Google Scholar]
  16. Liu C. X., Zachara J. M., Foster N. S., Strickland J.. ( 2007;). Kinetics of reductive dissolution of hematite by bioreduced anthraquinone-2,6-disulfonate. . Environ Sci Technol 41:, 7730–7735. [CrossRef][PubMed]
    [Google Scholar]
  17. Lovley D. R., Coates J. D., Blunt-Harris E. L., Phillips F. J. P., Woodward J. C.. ( 1996;). Humic substances as electron acceptors for microbial respiration. . Nature 382:, 445–448. [CrossRef]
    [Google Scholar]
  18. Macy J. M., Rech S., Auling G., Dorsch M., Stackebrandt E., Sly L. I.. ( 1993;). Thauera selenatis gen. nov., sp. nov., a member of the beta subclass of Proteobacteria with a novel type of anaerobic respiration. . Int J Syst Bacteriol 43:, 135–142. [CrossRef][PubMed]
    [Google Scholar]
  19. Mandel M., Marmur J.. ( 1968;). Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. . Methods Enzymol 12B:, 195–206. [CrossRef]
    [Google Scholar]
  20. Mechichi T., Stackebrandt E., Gad’on N., Fuchs G.. ( 2002;). Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromatica sp. nov., and Azoarcus buckelii sp. nov.. Arch Microbiol 178:, 26–35. [CrossRef][PubMed]
    [Google Scholar]
  21. Perminova I. V., Hatfield K.. ( 2005;). Remediation chemistry of humic substances: theory and implications for technology. . In Use of Humic Substances to Remediate Polluted Environments: from theory to practice, pp. 3–36. Edited by Perminova I. V., Hatfield K., Hertkorn N... Dordrecht:: Springer;. [CrossRef]
    [Google Scholar]
  22. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  23. Sambrook J., Russell D. W.. ( 2001;). Molecular cloning: a Laboratory Manual, , 3rd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  24. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, DE: MIDI.
  25. Scholten E., Lukow T., Auling G., Kroppenstedt R. M., Rainey F. A., Diekmann H.. ( 1999;). Thauera mechernichensis sp. nov., an aerobic denitrifier from a leachate treatment plant. . Int J Syst Bacteriol 49:, 1045–1051. [CrossRef][PubMed]
    [Google Scholar]
  26. Scott D. T., Mcknight D. M., Blunt-Harris E. L., Kolesar S. E., Lovley D. R.. ( 1998;). Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. . Environ Sci Technol 32:, 2984–2989. [CrossRef]
    [Google Scholar]
  27. Seyfried B., Tschech A., Fuchs G.. ( 1991;). Anaerobic degradation of phenylacetate and 4-hydroxyphenylacetate by denitrifying bacteria. . Arch Microbiol 155:, 249–255. [CrossRef]
    [Google Scholar]
  28. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  29. Song B., Palleroni N. J., Kerkhof L. J., Häggblom M. M.. ( 2001;). Characterization of halobenzoate-degrading, denitrifying Azoarcus and Thauera isolates and description of Thauera chlorobenzoica sp. nov.. Int J Syst Evol Microbiol 51:, 589–602.[PubMed]
    [Google Scholar]
  30. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  31. Straub K. L., Kappler A., Schink B.. ( 2005;). Enrichment and isolation of ferric-iron- and humic-acid-reducing bacteria. . Methods Enzymol 397:, 58–77. [CrossRef][PubMed]
    [Google Scholar]
  32. Tamaoka J., Katayama-Fujimura Y., Kuraishi H.. ( 1983;). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. . J Appl Bacteriol 54:, 31–36. [CrossRef]
    [Google Scholar]
  33. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). MEGA4: Molecular Evolutionary Genetic Analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  34. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  35. Wu C. Y., Zhuang L., Zhou S. G., Li F. B., He J.. ( 2011;). Corynebacterium humireducens sp. nov., an alkaliphilic, humic acid-reducing bacterium isolated from a microbial fuel cell. . Int J Syst Evol Microbiol 61:, 882–887. [CrossRef][PubMed]
    [Google Scholar]
  36. Yuan Y., Zhou S. G., Zhuang L.. ( 2010;). A new approach to in situ sediment remediation based on air-cathode microbial fuel cells. . J Soils Sediments 10:, 1427–1433. [CrossRef]
    [Google Scholar]
  37. Zachara J. M., Fredrickson J. K., Li S. M., Kennedy D. W., Smith S. C., Gassman P. L.. ( 1998;). Bacterial reduction of crystalline Fe3+ oxides in single phase suspensions and subsurface materials. . Am Mineral 83:, 1426–1443.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.040956-0
Loading
/content/journal/ijsem/10.1099/ijs.0.040956-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error