1887

Abstract

A Gram-negative, aerobic, copper-resistant bacterium, designated strain CU4, was isolated from copper mine soil in Daye, China. Phylogenetic analysis based on 16S rRNA gene sequences showed highest similarity to CC-FH12-1 (98.4 %), followed by Sp+ (97.2 %), UT26 (97.1 %), NBRC 16140 (97.0 %), DSM 6383 (96.9 %) and DSM 7462 (95.5 %). The major fatty acids (>5 %) were summed feature 7 (Cω7, Cω9 and/or Cω12), summed feature 4 (Cω7 and/or iso-C 2-OH), C and C 2-OH, and the predominant quinone was ubiquinone Q-10. Spermidine was the major polyamine component. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid, phosphatidyldimethylethanolamine and phosphatidylcholine. The genomic DNA G+C content of strain CU4 was 64.9 mol%. Comparison of DNA–DNA hybridization, phenotypic and chemotaxonomic characteristics between strain CU4 and phylogenetically related strains revealed that the new isolate represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CU4 ( = KCTC 23865 = CCTCC AB 2011146). An emended description of the genus is also proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.040865-0
2013-02-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/2/604.html?itemId=/content/journal/ijsem/10.1099/ijs.0.040865-0&mimeType=html&fmt=ahah

References

  1. Andreazza R. , Pieniz S. , Wolf L. , Lee M.-K. , Camargo F. A. O. , Okeke B. C. . ( 2010; ). Characterization of copper bioreduction and biosorption by a highly copper resistant bacterium isolated from copper-contaminated vineyard soil. . Sci Total Environ 408:, 1501–1507. [CrossRef] [PubMed]
    [Google Scholar]
  2. Andreazza R. , Okeke B. C. , Pieniz S. , Bortolon L. , Lambais M. R. , Camargo F. A. O. . ( 2012; ). Effects of stimulation of copper bioleaching on microbial community in vineyard soil and copper mining waste. . Biol Trace Elem Res 146:, 124–133. [CrossRef] [PubMed]
    [Google Scholar]
  3. Arden-Jones M. P. , McCarthy A. J. , Cross T. . ( 1979; ). Taxonomic and serologic studies on Micropolyspora faeni and Micropolyspora strains from soil bearing the specific epithet rectivirgula . . J Gen Microbiol 115:, 343–354. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bala K. , Sharma P. , Lal R. . ( 2010; ). Sphingobium quisquiliarum sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH-contaminated soil. . Int J Syst Evol Microbiol 60:, 429–433. [CrossRef] [PubMed]
    [Google Scholar]
  5. Basta T. , Buerger S. , Stolz A. . ( 2005; ). Structural and replicative diversity of large plasmids from sphingomonads that degrade polycyclic aromatic compounds and xenobiotics. . Microbiology 151:, 2025–2037. [CrossRef] [PubMed]
    [Google Scholar]
  6. Busse H.-J. , Auling G. . ( 1988; ). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  7. Busse H.-J. , Bunka S. , Hensel A. , Lubitz W. . ( 1997; ). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. . Int J Syst Bacteriol 47:, 698–708. [CrossRef]
    [Google Scholar]
  8. Busse H.-J. , Kämpfer P. , Denner E. B. M. . ( 1999; ). Chemotaxonomic characterisation of Sphingomonas . . J Ind Microbiol Biotechnol 23:, 242–251. [CrossRef] [PubMed]
    [Google Scholar]
  9. Collins M. D. , Jones D. . ( 1980; ). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. . J Appl Bacteriol 48:, 459–470. [CrossRef]
    [Google Scholar]
  10. Collins M. D. , Pirouz T. , Goodfellow M. , Minnikin D. E. . ( 1977; ). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef] [PubMed]
    [Google Scholar]
  11. Dadhwal M. , Jit S. , Kumari H. , Lal R. . ( 2009; ). Sphingobium chinhatense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite. . Int J Syst Evol Microbiol 59:, 3140–3144. [CrossRef] [PubMed]
    [Google Scholar]
  12. Fitch W. M. . ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  13. Garg N. , Bala K. , Lal R. . ( 2012; ). Sphingobium lucknowense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from HCH-contaminated soil. . Int J Syst Evol Microbiol 62:, 618–623. [CrossRef] [PubMed]
    [Google Scholar]
  14. Gordon R. E. , Mihm J. M. . ( 1957; ). A comparative study of some strains received as nocardiae. . J Bacteriol 73:, 15–27.[PubMed]
    [Google Scholar]
  15. Gordon R. E. , Barnett D. A. , Handerhan J. E. , Pang C. H.-N. . ( 1974; ). Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. . Int J Syst Bacteriol 24:, 54–63. [CrossRef]
    [Google Scholar]
  16. Guindon S. , Gascuel O. . ( 2003; ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52:, 696–704. [CrossRef] [PubMed]
    [Google Scholar]
  17. He L. Y. , Zhang Y. F. , Ma H. Y. , Su L. N. , Chen Z. J. , Wang Q. Y. , Qian M. , Sheng X. F. . ( 2010; ). Characterization of copper-resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. . Appl Soil Ecol 44:, 49–55. [CrossRef]
    [Google Scholar]
  18. Huss V. A. R. , Festl H. , Schleifer K. H. . ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef]
    [Google Scholar]
  19. Kim S. J. , Chun J. , Bae K. S. , Kim Y. C. . ( 2000; ). Polyphasic assignment of an aromatic-degrading Pseudomonas sp., strain DJ77, in the genus Sphingomonas as Sphingomonas chungbukensis sp. nov.. Int J Syst Evol Microbiol 50:, 1641–1647. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kim O.-S. , Cho Y.-J. , Lee K. , Yoon S.-H. , Kim M. , Na H. , Park S.-C. , Jeon Y. S., , Lee J.-H. . ( 2007; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef]
    [Google Scholar]
  21. Kumari H. , Gupta S. K. , Jindal S. , Katoch P. , Lal R. . ( 2009; ). Sphingobium lactosutens sp. nov., isolated from a hexachlorocyclohexane dump site and Sphingobium abikonense sp. nov., isolated from oil-contaminated soil. . Int J Syst Evol Microbiol 59:, 2291–2296. [CrossRef] [PubMed]
    [Google Scholar]
  22. Liang Q. F. , Lloyd-Jones G. . ( 2010; ). Sphingobium scionense sp. nov., an aromatic hydrocarbon-degrading bacterium isolated from contaminated sawmill soil. . Int J Syst Evol Microbiol 60:, 413–416. [CrossRef] [PubMed]
    [Google Scholar]
  23. Lim C. K. , Cooksey D. A. . ( 1993; ). Characterization of chromosomal homologs of the plasmid-borne copper resistance operon of Pseudomonas syringae . . J Bacteriol 175:, 4492–4498.[PubMed]
    [Google Scholar]
  24. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  25. Minnikin D. E. , Collins M. D. , Goodfellow M. . ( 1979; ). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Bacteriol 47:, 87–95. [CrossRef]
    [Google Scholar]
  26. Pal R. , Bala S. , Dadhwal M. , Kumar M. , Dhingra G. , Prakash O. , Prabagaran S. R. , Shivaji S. , Cullum J. . & other authors ( 2005; ). Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp. nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov. and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukensis comb. nov.. Int J Syst Evol Microbiol 55:, 1965–1972. [CrossRef] [PubMed]
    [Google Scholar]
  27. Ryu E. . ( 1938; ). On the Gram-differentiation of bacteria by the simplest method. . J Jpn Soc Vet Sci 17:, 58–63.[CrossRef]
    [Google Scholar]
  28. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  29. Smibert R. M. , Krieg N. R. . ( 1994; ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhart P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  30. Takeuchi M. , Hamana K. , Hiraishi A. . ( 2001; ). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. . Int J Syst Evol Microbiol 51:, 1405–1417.[PubMed]
    [Google Scholar]
  31. Tamaoka J. , Katayama-Fujimura Y. , Kuraishi H. . ( 1983; ). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. . J Appl Bacteriol 54:, 31–36. [CrossRef]
    [Google Scholar]
  32. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  33. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  34. Ushiba Y. , Takahara Y. , Ohta H. . ( 2003; ). Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment. . Int J Syst Evol Microbiol 53:, 2045–2048. [CrossRef] [PubMed]
    [Google Scholar]
  35. Vaz-Moreira I. , Faria C. , Lopes A. R. , Svensson L. , Falsen E. , Moore E. R. B. , Ferreira A. C. S. , Nunes O. C. , Manaia C. M. . ( 2009; ). Sphingobium vermicomposti sp. nov., isolated from vermicompost. . Int J Syst Evol Microbiol 59:, 3145–3149. [CrossRef] [PubMed]
    [Google Scholar]
  36. Wang B.-Z. , Guo P. , Zheng J.-W. , Hang B.-J. , Li L. , He J. , Li S.-P. . ( 2011; ). Sphingobium wenxiniae sp. nov., a synthetic pyrethroid (SP)-degrading bacterium isolated from activated sludge in an SP-manufacturing wastewater treatment facility. . Int J Syst Evol Microbiol 61:, 1776–1780. [CrossRef] [PubMed]
    [Google Scholar]
  37. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  38. Wilson K. H. , Blitchington R. B. , Greene R. C. . ( 1990; ). Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. . J Clin Microbiol 28:, 1942–1946.[PubMed]
    [Google Scholar]
  39. Wittich R.-M. , Busse H.-J. , Kämpfer P. , Tiirola M. , Wieser M. , Macedo A. J. , Abraham W.-R. . ( 2007; ). Sphingobium aromaticiconvertens sp. nov., a xenobiotic-compound-degrading bacterium from polluted river sediment. . Int J Syst Evol Microbiol 57:, 306–310. [CrossRef] [PubMed]
    [Google Scholar]
  40. Yabuuchi E. , Yano I. , Oyaizu H. , Hashimoto Y. , Ezaki T. , Yamamoto H. . ( 1990; ). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . . Microbiol Immunol 34:, 99–119.[PubMed] [CrossRef]
    [Google Scholar]
  41. Yan Q.-X. , Wang Y.-X. , Li S.-P. , Li W.-J. , Hong Q. . ( 2010; ). Sphingobium qiguonii sp. nov., a carbaryl-degrading bacterium isolated from a wastewater treatment system. . Int J Syst Evol Microbiol 60:, 2724–2728. [CrossRef] [PubMed]
    [Google Scholar]
  42. Young C.-C. , Arun A. B. , Kämpfer P. , Busse H.-J. , Lai W.-A. , Chen W.-M. , Shen F.-T. , Rekha P. D. . ( 2008; ). Sphingobium rhizovicinum sp. nov., isolated from rhizosphere soil of Fortunella hindsii (Champ. ex Benth.) Swingle. . Int J Syst Evol Microbiol 58:, 1801–1806. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.040865-0
Loading
/content/journal/ijsem/10.1099/ijs.0.040865-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error