1887

Abstract

A heterotrophic, Gram-stain-negative, aerobic bacterium, designated strain SH4-1, was obtained from a seawater sample collected from the southern North Sea during a phytoplankton bloom. The 16S rRNA gene sequence comparison revealed affiliation to the clade (class ) with SW-265 as the most closely related characterized strain, showing 97.2 % 16S rRNA gene sequence similarity. Calculation of phylogenetic trees based on 16S rRNA gene sequences indicated, however, that members of the genus , Och 114 and Och 149 (95 % and 96 % sequence similarity, respectively) fall between strain SH4-1 and the cluster including HEL-45 (≥95.4 % sequence similarity). Cells of strain SH4-1 are irregular rods with at least one flagellum. Optimal growth occurred between 28 and 32 °C and at a pH between 7.0 and 8.5. Cells require the vitamin nicotinic acid amide as well as sodium ions for growth. The DNA G+C content was 55.1 mol%. The fatty acids (>1 %) comprised C 3-OH, C, C 3-OH, C, C C, Cω7 and 11-methyl Cω7. The polar lipid pattern indicated the presence of phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylmonomethylethanolamine, an unidentified aminolipid, one unidentified phospholipid and one other unidentified lipid. On the basis of phenotypic, chemotaxonomic and phylogenetic differences, strain SH4-1 represents a novel species in a new genus within the family , for which we propose the name gen. nov., sp. nov. The type strain of the type species is SH4-1 ( = DSM 23678 = LMG 26343 = CIP 110297).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.040675-0
2013-03-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/3/835.html?itemId=/content/journal/ijsem/10.1099/ijs.0.040675-0&mimeType=html&fmt=ahah

References

  1. Alderkamp A. C., Sintes E., Herndl G. J.. ( 2006;). Abundance and activity of major groups of prokaryotic plankton in the coastal North Sea during spring and summer. . Aquat Microb Ecol 45:, 237–246. [CrossRef]
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S.. ( 1979;). Methanogens: reevaluation of a unique biological group. . Microbiol Rev 43:, 260–296.[PubMed]
    [Google Scholar]
  3. Béjà O., Suzuki M. T., Heidelberg J. F., Nelson W. C., Preston C. M., Hamada T., Eisen J. A., Fraser C. M., DeLong E. F.. ( 2002;). Unsuspected diversity among marine aerobic anoxygenic phototrophs. . Nature 415:, 630–633. [CrossRef][PubMed]
    [Google Scholar]
  4. Berger M., Neumann A., Schulz S., Simon M., Brinkhoff T.. ( 2011;). Tropodithietic acid production in Phaeobacter gallaeciensis is regulated by N-acyl homoserine lactone-mediated quorum sensing. . J Bacteriol 193:, 6576–6585. [CrossRef][PubMed]
    [Google Scholar]
  5. Biebl H., Allgaier M., Tindall B. J., Koblizek M., Lünsdorf H., Pukall R., Wagner-Döbler I.. ( 2005;). Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. . Int J Syst Evol Microbiol 55:, 1089–1096. [CrossRef][PubMed]
    [Google Scholar]
  6. Brinkhoff T., Muyzer G.. ( 1997;). Increased species diversity and extended habitat range of sulfur-oxidizing Thiomicrospira spp. . Appl Environ Microbiol 63:, 3789–3796.[PubMed]
    [Google Scholar]
  7. Brinkhoff T., Bach G., Heidorn T., Liang L., Schlingloff A., Simon M.. ( 2004;). Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. . Appl Environ Microbiol 70:, 2560–2565. [CrossRef][PubMed]
    [Google Scholar]
  8. Brinkhoff T., Giebel H.-A., Simon M.. ( 2008;). Diversity, ecology, and genomics of the Roseobacter clade: a short overview. . Arch Microbiol 189:, 531–539. [CrossRef][PubMed]
    [Google Scholar]
  9. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  10. Chávez F. P., Lünsdorf H., Jerez C. A.. ( 2004;). Growth of polychlorinated-biphenyl-degrading bacteria in the presence of biphenyl and chlorobiphenyls generates oxidative stress and massive accumulation of inorganic polyphosphate. . Appl Environ Microbiol 70:, 3064–3072. [CrossRef][PubMed]
    [Google Scholar]
  11. Clayton R. K.. ( 1966;). Spectroscopic analysis of bacteriochlorophylls in vitro and in vivo. . Photochem Photobiol 5:, 669–677. [CrossRef]
    [Google Scholar]
  12. Eilers H., Pernthaler J., Peplies J., Glöckner F. O., Gerdts G., Amann R.. ( 2001;). Isolation of novel pelagic bacteria from the German Bight and their seasonal contributions to surface picoplankton. . Appl Environ Microbiol 67:, 5134–5142. [CrossRef][PubMed]
    [Google Scholar]
  13. González J. M., Kiene R. P., Moran M. A.. ( 1999;). Transformation of sulfur compounds by an abundant lineage of marine bacteria in the α-subclass of the class Proteobacteria. . Appl Environ Microbiol 65:, 3810–3819.[PubMed]
    [Google Scholar]
  14. Hahnke S., Tindall B. J., Schumann P., Sperling M., Brinkhoff T., Simon M.. ( 2012;). Planktotalea frisia, gen. nov., sp. nov., isolated from the southern North Sea. . Int J Syst Evol Microbiol 62:, 1619–1624. [CrossRef][PubMed]
    [Google Scholar]
  15. Holmes A. J., Kelly D. P., Baker S. C., Thompson A. S., De Marco P., Kenna E. M., Murrell J. C.. ( 1997;). Methylosulfonomonas methylovora gen. nov., sp. nov., and Marinosulfonomonas methylotropha gen. nov., sp. nov.: novel methylotrophs able to grow on methanesulfonic acid. . Arch Microbiol 167:, 46–53. [CrossRef][PubMed]
    [Google Scholar]
  16. Ivanova E. P., Gorshkova N. M., Sawabe T., Zhukova N. V., Hayashi K., Kurilenko V. V., Alexeeva Y., Buljan V., Nicolau D. V.. & other authors ( 2004;). Sulfitobacter delicatus sp. nov. and Sulfitobacter dubius sp. nov., respectively from a starfish (Stellaster equestris) and sea grass (Zostera marina). . Int J Syst Evol Microbiol 54:, 475–480. [CrossRef][PubMed]
    [Google Scholar]
  17. Kalhoefer D., Thole S., Voget S., Lehmann R., Liesegang H., Wollher A., Daniel R., Simon M., Brinkhoff T.. ( 2011;). Comparative genome analysis and genome-guided physiological analysis of Roseobacter litoralis. . BMC Genomics 12:, 324. [CrossRef][PubMed]
    [Google Scholar]
  18. King G. M.. ( 2003;). Molecular and culture-based analyses of aerobic carbon monoxide oxidizer diversity. . Appl Environ Microbiol 69:, 7257–7265. [CrossRef][PubMed]
    [Google Scholar]
  19. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Braker G., Hirsch P.. ( 1998;). Antarctobacter heliothermus gen. nov., sp. nov., a budding bacterium from hypersaline and heliothermal Ekho Lake. . Int J Syst Bacteriol 48:, 1363–1372. [CrossRef][PubMed]
    [Google Scholar]
  20. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Schumann P., Hirsch P.. ( 1999;). Roseovarius tolerans gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. . Int J Syst Bacteriol 49:, 137–147. [CrossRef][PubMed]
    [Google Scholar]
  21. Lafay B., Ruimy R., Rausch De Traubenberg C., Breittmayer V., Gauthier M. J., Christen R.. ( 1995;). Roseobacter algicola sp. nov., a new marine bacterium isolated from the phycosphere of the toxin-producing dinoflagellate Prorocentrum lima. . Int J Syst Bacteriol 45:, 290–296. [CrossRef][PubMed]
    [Google Scholar]
  22. Ledyard K. M., Dacey W. H.. ( 1994;). Dimethylsulfide production from dimethylsulfoniopropionate by a marine bacterium. . Mar Ecol Prog Ser 110:, 95–103. [CrossRef]
    [Google Scholar]
  23. Ledyard K. M., DeLong E. F., Dacey J. W. H.. ( 1993;). Characterization of a DMSP-degrading bacterial isolate from the Sargasso Sea. . Arch Microbiol 160:, 312–318. [CrossRef]
    [Google Scholar]
  24. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). ARB: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  25. Martens T., Heidorn T., Pukall R., Simon M., Tindall B. J., Brinkhoff T.. ( 2006;). Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. . Int J Syst Evol Microbiol 56:, 1293–1304. [CrossRef][PubMed]
    [Google Scholar]
  26. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  27. Moran M. A., Buchan A., González J. M., Heidelberg J. F., Whitman W. B., Kiene R. P., Henriksen J. R., King G. M., Belas R.. & other authors ( 2004;). Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. . Nature 432:, 910–913. [CrossRef][PubMed]
    [Google Scholar]
  28. Murray R. G. E., Doetsch R. N., Robinow C. F.. ( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  29. Neumann U., Mayer H., Schiltz E., Benz R., Weckesser J.. ( 1995;). Lipopolysaccharide and porin of Roseobacter denitrificans, confirming its phylogenetic relationship to the α-3 subgroup of Proteobacteria. . Microbiology 141:, 2013–2017. [CrossRef][PubMed]
    [Google Scholar]
  30. Newton R. J., Griffin L. E., Bowles K. M., Meile C., Gifford S., Givens C. E., Howard E. C., King E., Oakley C. A.. & other authors ( 2010;). Genome characteristics of a generalist marine bacterial lineage. . ISME J 4:, 784–798. [CrossRef][PubMed]
    [Google Scholar]
  31. Park J. R., Bae J. W., Nam Y. D., Chang H. W., Kwon H. Y., Quan Z. X., Park Y. H.. ( 2007;). Sulfitobacter litoralis sp. nov., a marine bacterium isolated from the East Sea, Korea. . Int J Syst Evol Microbiol 57:, 692–695. [CrossRef][PubMed]
    [Google Scholar]
  32. Shiba T.. ( 1991;). Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. . Syst Appl Microbiol 14:, 140–145. [CrossRef]
    [Google Scholar]
  33. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  34. Sorokin D. Y.. ( 1995;). Sulfitobacter pontiacus gen. nov., sp. nov. – A new heterotrophic bacterium from the Black Sea, specialized on sulfite oxidation. . Microbiol 64:, 295–305.
    [Google Scholar]
  35. Strömpl C., Tindall B. J., Jarvis G. N., Lünsdorf H., Moore E. R. B., Hippe H.. ( 1999;). A re-evaluation of the taxonomy of the genus Anaerovibrio, with the reclassification of Anaerovibrio glycerini as Anaerosinus glycerini gen. nov., comb. nov., and Anaerovibrio burkinabensis as Anaeroarcus burkinensis [corrig.] gen. nov., comb. nov.. Int J Syst Bacteriol 49:, 1861–1872. [CrossRef][PubMed]
    [Google Scholar]
  36. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  37. Tindall B. J.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  38. Tindall B. J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  39. Tindall B. J.. ( 1996;). Respiratory lipoquinones as biomarkers. . In Molecular Microbial Ecology Manual, pp. 4.1.5 (Suppl. 1). Edited by Akkermans A., de Bruijn F., van Elsas D... Dordrecht:: Kluwer;.
    [Google Scholar]
  40. Tolli J.. ( 2003;). Identity and dynamics of the microbial community responsible for carbon monoxide oxidation in marine environments. Ph.D. thesis. Woods Hole Oceanographic Institution/Massachusetts Institute of Technology Joint Program, Woods Hole, Mass.
  41. Tschech A., Pfennig N.. ( 1984;). Growth yield increase linked to caffeate reduction in Acetobacterium woodii. . Arch Microbiol 137:, 163–167. [CrossRef]
    [Google Scholar]
  42. Wagner-Döbler I., Rheims H., Felske A., El-Ghezal A., Flade-Schröder D., Laatsch H., Lang S., Pukall R., Tindall B. J.. ( 2004;). Oceanibulbus indolifex gen. nov., sp. nov., a North Sea alphaproteobacterium that produces bioactive metabolites. . Int J Syst Evol Microbiol 54:, 1177–1184. [CrossRef][PubMed]
    [Google Scholar]
  43. Yoon J. H., Kang S.-J., Oh T.-K.. ( 2007;). Sulfitobacter marinus sp. nov., isolated from seawater of the East Sea in Korea. . Int J Syst Evol Microbiol 57:, 302–305. [CrossRef][PubMed]
    [Google Scholar]
  44. Yurkov V. V., Beatty J. T.. ( 1998;). Aerobic anoxygenic phototrophic bacteria. . Microbiol Mol Biol Rev 62:, 695–724.[PubMed]
    [Google Scholar]
  45. Zech H., Thole S., Schreiber K., Kalhöfer D., Voget S., Brinkhoff T., Simon M., Schomburg D., Rabus R.. ( 2009;). Growth phase-dependent global protein and metabolite profiles of Phaeobacter gallaeciensis strain DSM 17395, a member of the marine Roseobacter-clade. . Proteomics 9:, 3677–3697. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.040675-0
Loading
/content/journal/ijsem/10.1099/ijs.0.040675-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error