1887

Abstract

16S rRNA gene sequences deposited for the type strains of (CTT-37; GenBank accession no. AB445007) and (DSW-2; FM995611) show a similarity of 100 %. Consequently, the type strains were subjected to a polyphasic recharacterization under direct comparison in order to clarify their taxonomic position. II RiboPrint patterns and quantitative ratios of cellular fatty acids revealed strain-specific differences between DSM 21750 ( = CTT-37) and DSM 22126 ( = DSW-2). The percentage of DNA–DNA binding of 94 % indicated that the two type strains belong to the same genomospecies. Agreement in the peptidoglycan structure and polar lipid pattern, highly similar fatty acid profiles and MALDI-TOF mass spectra, the ability to produce acid from the same carbon sources, corresponding enzymic activities and DNA G+C contents of 70.8±0.3 mol%, in addition to the consistent characteristics reported in the original descriptions, support the view that the two strains should be affiliated to the same species. According to Rules 38 and 42 of the , should be reclassified as later heterotypic synonym of , and the descriptions of the genus Khan 2009 and of Khan 2009 are emended accordingly.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.040600-0
2013-01-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/1/219.html?itemId=/content/journal/ijsem/10.1099/ijs.0.040600-0&mimeType=html&fmt=ahah

References

  1. Barney M., Volgyi A., Navarro A., Ryder D.. ( 2001;). Riboprinting and 16S rRNA gene sequencing for identification of brewery Pediococcus isolates. . Appl Environ Microbiol 67:, 553–560. [CrossRef][PubMed]
    [Google Scholar]
  2. Bruce J.. ( 1996;). Automated system rapidly identifies and characterizes microorganisms in food. . Food Technol 50:, 77–81.
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–789. [CrossRef]
    [Google Scholar]
  7. Gordon R. E., Haynes W. C., Pang C. H.-N.. ( 1973;). The Genus Bacillus. Agriculture Handbook no. 427. Washington, DC:: Agricultural Research Service, United States Department of Agriculture;.
    [Google Scholar]
  8. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  9. Huss V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef]
    [Google Scholar]
  10. Khan S. T., Harayama S., Tamura T., Ando K., Takagi M., Kazuo S. Y.. ( 2009;). Paraoerskovia marina gen. nov., sp. nov., an actinobacterium isolated from marine sediment. . Int J Syst Evol Microbiol 59:, 2094–2098. [CrossRef][PubMed]
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  12. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  13. Lapage S. P., Sneath P. H. A., Lessel E. F., Skerman V. B. D., Seeliger H. P. R., Clark W. A.. (editors) ( 1992;). International Code of Nomenclature of Bacteria (1990 Revision). Bacteriological Code. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  14. Lee D. W., Lee S. D.. ( 2010;). Koreibacter algae gen. nov., sp. nov., isolated from seaweed. . Int J Syst Evol Microbiol 60:, 1510–1515. [CrossRef][PubMed]
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  16. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  17. Schleifer K. H.. ( 1985;). Analysis of the chemical composition and primary structure of murein. . Methods Microbiol 18:, 123–156. [CrossRef]
    [Google Scholar]
  18. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  19. Schumann P.. ( 2011;). Peptidoglycan structure. . Methods Microbiol 38:, 101–129. [CrossRef]
    [Google Scholar]
  20. Schumann P., Gvozdyak O. R.. ( 2012;). International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of the suborder Micrococcineae. Minutes of the meeting, 9 September 2011, Sapporo, Japan. . Int J Syst Evol Microbiol 62:, 755. [CrossRef]
    [Google Scholar]
  21. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  22. Staneck J. L., Roberts G. D.. ( 1974;). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. . Appl Microbiol 28:, 226–231.[PubMed]
    [Google Scholar]
  23. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  24. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  25. Tindall B. J., Sikorski J., Smibert R. M., Krieg N. R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, pp. 332–393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Synder L. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  26. Tóth E. M., Schumann P., Borsodi A. K., Kéki Z., Kovács A. L., Márialigeti K.. ( 2008;). Wohlfahrtiimonas chitiniclastica gen. nov., sp. nov., a new gammaproteobacterium isolated from Wohlfahrtia magnifica (Diptera: Sarcophagidae). . Int J Syst Evol Microbiol 58:, 976–981. [CrossRef][PubMed]
    [Google Scholar]
  27. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.040600-0
Loading
/content/journal/ijsem/10.1099/ijs.0.040600-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error