1887

Abstract

A myxobacterial strain, designated SYR-2, was obtained from a mud sample from an estuarine marsh alongside the Yoshino River, Shikoku, Japan. It had rod-shaped vegetative cells and formed bacteriolytic enlarging colonies or so-called ‘swarms’ in the agar media. Fruiting-body-like globular to polyhedral cell aggregates and myxospore-like spherical to ellipsoidal cells within them were observed. Those features coincided with the general characteristics of myxobacteria. The strain was mesophilic and strictly aerobic. Growth of SYR-2 was observed at 18–40 °C (optimum, 30–35 °C), pH 5.5–8.3 (optimum, pH 7.0–7.5) and with 0.0–2.5 % (w/v) NaCl (optimum, 0.2–1.0 %). Both Mg and Ca were essential cations for the growth. The predominant fatty acids were iso-C (43.8 %), iso-C (22.4 %) and iso-C (9.6 %). A C fatty acid [arachidonic acid (4.3 %)], iso-C (1.5 %) and anteiso-acids [ai-C (0.5 %), ai-C (0.3 %)] were also detected. The G+C content of the DNA was 69.7 mol%. The strain contained menaquinone-7 (MK-7) as the major respiratory quinone. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain SYR-2 belonged to the suborder , order in the class , and the strain was most closely related to two type strains of marine myxobacteria, SHK-1 and SIR-1, with 96.5 % and 96.0 % similarities, respectively. These characteristics determined in this polyphasic study suggested that strain SYR-2 represents a novel species in a new genus of myxobacteria. The name gen. nov., sp. nov. is proposed to accommodate this isolate, and the type strain of is SYR-2 ( = NBRC 104351 = DSM 21377).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.040501-0
2013-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/4/1360.html?itemId=/content/journal/ijsem/10.1099/ijs.0.040501-0&mimeType=html&fmt=ahah

References

  1. Arahal D. R., Castillo A. M., Ludwig W., Schleifer K. H., Ventosa A. ( 2002 ). Proposal of Cobetia marina gen. nov., comb. nov., within the family Halomonadaceae, to include the species Halomonas marina . . Syst Appl Microbiol 25, 207211. [View Article] [PubMed]
    [Google Scholar]
  2. Cheng Y.-Y., Qian Y.-K., Li Z.-F., Wu Z.-H., Liu H., Li Y.-Z. ( 2011 ). A novel cold-adapted lipase from Sorangium cellulosum strain So0157–2: gene cloning, expression, and enzymatic characterization. . Int J Mol Sci 12, 67656780. [View Article] [PubMed]
    [Google Scholar]
  3. Chowdhury S. P., Schmid M., Hartmann A., Tripathi A. K. ( 2009 ). Diversity of 16S-rRNA and nifH genes derived from rhizosphere soil and roots of an endemic drought tolerant grass, Lasiurus sindicus . . Eur J Soil Biol 45, 114122. [View Article]
    [Google Scholar]
  4. Dawid W. ( 2000 ). Biology and global distribution of myxobacteria in soils. . FEMS Microbiol Rev 24, 403427. [View Article] [PubMed]
    [Google Scholar]
  5. Fudou R., Jojima Y., Iizuka T., Yamanaka S. ( 2002 ). Haliangium ochraceum, gen. nov. sp. nov. and Haliangium tepidum sp. nov.: Novel moderately halophilic myxobacteria isolated from coastal saline environments. . J Gen Appl Microbiol 48, 109115. [View Article] [PubMed]
    [Google Scholar]
  6. Garcia R. O., Reichenbach H., Ring M. W., Müller R. ( 2009 ). Phaselicystis flava gen. nov., sp. nov., an arachidonic acid-containing soil myxobacterium, and the description of Phaselicystidaceae fam. nov.. Int J Syst Evol Microbiol 59, 15241530. [View Article] [PubMed]
    [Google Scholar]
  7. Garcia R., Gerth K., Stadler M., Dogma I. J. Jr, Müller R. ( 2010 ). Expanded phylogeny of myxobacteria and evidence for cultivation of the ‘unculturables’. . Mol Phylogenet Evol 57, 878887. [View Article] [PubMed]
    [Google Scholar]
  8. Garcia R., Pistorius D., Stadler M., Müller R. ( 2011 ). Fatty acid-related phylogeny of myxobacteria as an approach to discover polyunsaturated omega-3/6 fatty acids. . J Bacteriol 193, 19301942. [View Article] [PubMed]
    [Google Scholar]
  9. Gerth K., Pradella S., Perlova O., Beyer S., Müller R. ( 2003 ). Myxobacteria: proficient producers of novel natural products with various biological activities–past and future biotechnological aspects with the focus on the genus Sorangium . . J Biotechnol 106, 233253. [View Article] [PubMed]
    [Google Scholar]
  10. Hesseler M., Bogdanović X., Hidalgo A., Berenguer J., Palm G. J., Hinrichs W., Bornscheuer U. T. ( 2011 ). Cloning, functional expression, biochemical characterization, and structural analysis of a haloalkane dehalogenase from Plesiocystis pacifica SIR-1. . Appl Microbiol Biotechnol 91, 10491060. [View Article] [PubMed]
    [Google Scholar]
  11. Iizuka T., Jojima Y., Fudou R., Yamanaka S. ( 1998 ). Isolation of myxobacteria from the marine environment. . FEMS Microbiol Lett 169, 317322. [View Article] [PubMed]
    [Google Scholar]
  12. Iizuka T., Jojima Y., Fudou R., Hiraishi A., Ahn J.-W., Yamanaka S. ( 2003a ). Plesiocystis pacifica gen. nov., sp. nov., a marine myxobacterium that contains dihydrogenated menaquinone, isolated from the Pacific coasts of Japan. . Int J Syst Evol Microbiol 53, 189195. [View Article] [PubMed]
    [Google Scholar]
  13. Iizuka T., Jojima Y., Fudou R., Tokura M., Hiraishi A., Yamanaka S. ( 2003b ). Enhygromyxa salina gen. nov., sp. nov., a slightly halophilic myxobacterium isolated from the coastal areas of Japan. . Syst Appl Microbiol 26, 189196. [View Article] [PubMed]
    [Google Scholar]
  14. Iizuka T., Fudou R., Jojima Y., Ogawa S., Yamanaka S., Inukai Y., Ojika M. ( 2006a ). Miuraenamides A and B, novel antimicrobial cyclic depsipeptides from a new slightly halophilic myxobacterium: taxonomy, production, and biological properties. . J Antibiot (Tokyo) 59, 385391. [View Article] [PubMed]
    [Google Scholar]
  15. Iizuka T., Tokura M., Jojima Y., Hiraishi A., Yamanaka S., Fudou R. ( 2006b ). Enrichment and phylogenetic analysis of moderately thermophilic myxobacteria from hot springs in Japan. . Microbes Environ 21, 189199. [View Article]
    [Google Scholar]
  16. Kimura M. ( 1980 ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16, 111120. [View Article] [PubMed]
    [Google Scholar]
  17. Lang E., Kroppenstedt R. M., Sträubler B., Stackebrandt E. ( 2008 ). Reclassification of Myxococcus flavescens Yamanaka et al. 1990VP as a later synonym of Myxococcus virescens Thaxter 1892AL.. Int J Syst Evol Microbiol 58, 26072609. [View Article] [PubMed]
    [Google Scholar]
  18. Lueders T., Kindler R., Miltner A., Friedrich M. W., Kaestner M. ( 2006 ). Identification of bacterial micropredators distinctively active in a soil microbial food web. . Appl Environ Microbiol 72, 53425348. [View Article] [PubMed]
    [Google Scholar]
  19. Marmur J. ( 1961 ). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3, 208218. [View Article]
    [Google Scholar]
  20. McCurdy H. D. ( 1989 ). Order Myxococcales Tchan, Pochon and Prévot 1948, 398AL (with contributions of E. R. Brockman, H. Reichenbach, and D. White). . In Bergey's Manual of Systematic Bacteriology, vol. 3, pp. 21392170. Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. G. . Baltimore, MA:: Williams and Wilkins;.
    [Google Scholar]
  21. Mohr K. I., Garcia R. O., Gerth K., Irschik H., Müller R. ( 2012 ). Sandaracinus amylolyticus gen. nov., sp. nov., a starch degrading soil myxobacterium, and the description of Sandaracinaceae fam. nov.. Int J Syst Evol Microbiol 62, 11911198. [View Article] [PubMed]
    [Google Scholar]
  22. Nishijima M., Araki-Sakai M., Sano H. ( 1997 ). Identification of isoprenoid quinones by frit-FAB liquid chromatography-mass spectrometry for the chemotaxonomy of microorganisms. . J Microbiol Methods 28, 113122. [View Article]
    [Google Scholar]
  23. Ojika M., Inukai Y., Kito Y., Hirata M., Iizuka T., Fudou R. ( 2008 ). Miuraenamides: antimicrobial cyclic depsipeptides isolated from a rare and slightly halophilic myxobacterium. . Chem Asian J 3, 126133. [View Article] [PubMed]
    [Google Scholar]
  24. Reichenbach H. ( 1989 ). Genus II. Nannocystis. . In Bergey's Manual of Systematic Bacteriology, vol. 3, pp. 21622166. Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. G. . Baltimore, MA:: Williams and Wilkins;.
    [Google Scholar]
  25. Reichenbach H. ( 1999 ). The ecology of the myxobacteria. . Environ Microbiol 1, 1521. [View Article] [PubMed]
    [Google Scholar]
  26. Reichenbach H. ( 2005 ). Order VIII. Myxococcales Tchan, Pochon and Prévot 1948, 398AL . . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2, (part c), pp. 10591144. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. . New York:: Springer;.
    [Google Scholar]
  27. Reichenbach H., Dworkin M. ( 1992 ). The myxobacteria. . In The Prokaryotes, , 2nd edn., vol. IV, pp. 34163487. Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. . Berlin, BRD:: Springer-Verlag;. [CrossRef]
    [Google Scholar]
  28. Rheinheimer G. ( 1992 ). Environmental factors in microbial development: salinity. . In Aquatic Microbiology , , 4th edn., pp. 128–133, 166169. Edited by Rheinheimer G. . (Translated by N. Walker, from the German edition: Mikrobiologie der Gewässer. Jena, BRD: Gustav Fischer Verlag. 1991). Chichester, UK:: John Wiley & Sons;.
    [Google Scholar]
  29. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  30. Schäberle T. F., Goralski E., Neu E., Erol Ö., Hölzl G., Dörmann P., Bierbaum G., König G. M. ( 2010 ). Marine myxobacteria as a source of antibiotics–comparison of physiology, polyketide-type genes and antibiotic production of three new isolates of Enhygromyxa salina . . Mar Drugs 8, 24662479. [View Article] [PubMed]
    [Google Scholar]
  31. Shimkets L., Woese C. R. ( 1992 ). A phylogenetic analysis of the myxobacteria: basis for their classification. . Proc Natl Acad Sci U S A 89, 94599463. [View Article] [PubMed]
    [Google Scholar]
  32. Spröer C., Reichenbach H., Stackebrandt E. ( 1999 ). The correlation between morphological and phylogenetic classification of myxobacteria. . Int J Syst Bacteriol 49, 12551262. [View Article] [PubMed]
    [Google Scholar]
  33. Stackebrandt E., Goebel B. M. ( 1994 ). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44, 846849. [View Article]
    [Google Scholar]
  34. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [View Article] [PubMed]
    [Google Scholar]
  35. Uno K., Nakano S. ( 2007 ). Effect of tidal current on sediment transport at the tidal flats. . J Coast Res 50 (Special Issue), 746750.
    [Google Scholar]
  36. Weissman K. J., Müller R. ( 2010 ). Myxobacterial secondary metabolites: bioactivities and modes-of-action. . Nat Prod Rep 27, 12761295. [View Article] [PubMed]
    [Google Scholar]
  37. Zhang Y.-Q., Li Y.-Z., Wang B., Wu Z.-H., Zhang C.-Y., Gong X., Qiu Z.-J., Zhang Y. ( 2005 ). Characteristics and living patterns of marine myxobacterial isolates. . Appl Environ Microbiol 71, 33313336. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.040501-0
Loading
/content/journal/ijsem/10.1099/ijs.0.040501-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error