1887

Abstract

A myxobacterial strain, designated SYR-2, was obtained from a mud sample from an estuarine marsh alongside the Yoshino River, Shikoku, Japan. It had rod-shaped vegetative cells and formed bacteriolytic enlarging colonies or so-called ‘swarms’ in the agar media. Fruiting-body-like globular to polyhedral cell aggregates and myxospore-like spherical to ellipsoidal cells within them were observed. Those features coincided with the general characteristics of myxobacteria. The strain was mesophilic and strictly aerobic. Growth of SYR-2 was observed at 18–40 °C (optimum, 30–35 °C), pH 5.5–8.3 (optimum, pH 7.0–7.5) and with 0.0–2.5 % (w/v) NaCl (optimum, 0.2–1.0 %). Both Mg and Ca were essential cations for the growth. The predominant fatty acids were iso-C (43.8 %), iso-C (22.4 %) and iso-C (9.6 %). A C fatty acid [arachidonic acid (4.3 %)], iso-C (1.5 %) and anteiso-acids [ai-C (0.5 %), ai-C (0.3 %)] were also detected. The G+C content of the DNA was 69.7 mol%. The strain contained menaquinone-7 (MK-7) as the major respiratory quinone. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain SYR-2 belonged to the suborder , order in the class , and the strain was most closely related to two type strains of marine myxobacteria, SHK-1 and SIR-1, with 96.5 % and 96.0 % similarities, respectively. These characteristics determined in this polyphasic study suggested that strain SYR-2 represents a novel species in a new genus of myxobacteria. The name gen. nov., sp. nov. is proposed to accommodate this isolate, and the type strain of is SYR-2 ( = NBRC 104351 = DSM 21377).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.040501-0
2013-04-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/4/1360.html?itemId=/content/journal/ijsem/10.1099/ijs.0.040501-0&mimeType=html&fmt=ahah

References

  1. Arahal D. R. , Castillo A. M. , Ludwig W. , Schleifer K. H. , Ventosa A. . ( 2002; ). Proposal of Cobetia marina gen. nov., comb. nov., within the family Halomonadaceae, to include the species Halomonas marina . . Syst Appl Microbiol 25:, 207–211. [CrossRef] [PubMed]
    [Google Scholar]
  2. Cheng Y.-Y. , Qian Y.-K. , Li Z.-F. , Wu Z.-H. , Liu H. , Li Y.-Z. . ( 2011; ). A novel cold-adapted lipase from Sorangium cellulosum strain So0157–2: gene cloning, expression, and enzymatic characterization. . Int J Mol Sci 12:, 6765–6780. [CrossRef] [PubMed]
    [Google Scholar]
  3. Chowdhury S. P. , Schmid M. , Hartmann A. , Tripathi A. K. . ( 2009; ). Diversity of 16S-rRNA and nifH genes derived from rhizosphere soil and roots of an endemic drought tolerant grass, Lasiurus sindicus . . Eur J Soil Biol 45:, 114–122. [CrossRef]
    [Google Scholar]
  4. Dawid W. . ( 2000; ). Biology and global distribution of myxobacteria in soils. . FEMS Microbiol Rev 24:, 403–427. [CrossRef] [PubMed]
    [Google Scholar]
  5. Fudou R. , Jojima Y. , Iizuka T. , Yamanaka S. . ( 2002; ). Haliangium ochraceum, gen. nov. sp. nov. and Haliangium tepidum sp. nov.: Novel moderately halophilic myxobacteria isolated from coastal saline environments. . J Gen Appl Microbiol 48:, 109–115. [CrossRef] [PubMed]
    [Google Scholar]
  6. Garcia R. O. , Reichenbach H. , Ring M. W. , Müller R. . ( 2009; ). Phaselicystis flava gen. nov., sp. nov., an arachidonic acid-containing soil myxobacterium, and the description of Phaselicystidaceae fam. nov.. Int J Syst Evol Microbiol 59:, 1524–1530. [CrossRef] [PubMed]
    [Google Scholar]
  7. Garcia R. , Gerth K. , Stadler M. , Dogma I. J. Jr , Müller R. . ( 2010; ). Expanded phylogeny of myxobacteria and evidence for cultivation of the ‘unculturables’. . Mol Phylogenet Evol 57:, 878–887. [CrossRef] [PubMed]
    [Google Scholar]
  8. Garcia R. , Pistorius D. , Stadler M. , Müller R. . ( 2011; ). Fatty acid-related phylogeny of myxobacteria as an approach to discover polyunsaturated omega-3/6 fatty acids. . J Bacteriol 193:, 1930–1942. [CrossRef] [PubMed]
    [Google Scholar]
  9. Gerth K. , Pradella S. , Perlova O. , Beyer S. , Müller R. . ( 2003; ). Myxobacteria: proficient producers of novel natural products with various biological activities–past and future biotechnological aspects with the focus on the genus Sorangium . . J Biotechnol 106:, 233–253. [CrossRef] [PubMed]
    [Google Scholar]
  10. Hesseler M. , Bogdanović X. , Hidalgo A. , Berenguer J. , Palm G. J. , Hinrichs W. , Bornscheuer U. T. . ( 2011; ). Cloning, functional expression, biochemical characterization, and structural analysis of a haloalkane dehalogenase from Plesiocystis pacifica SIR-1. . Appl Microbiol Biotechnol 91:, 1049–1060. [CrossRef] [PubMed]
    [Google Scholar]
  11. Iizuka T. , Jojima Y. , Fudou R. , Yamanaka S. . ( 1998; ). Isolation of myxobacteria from the marine environment. . FEMS Microbiol Lett 169:, 317–322. [CrossRef] [PubMed]
    [Google Scholar]
  12. Iizuka T. , Jojima Y. , Fudou R. , Hiraishi A. , Ahn J.-W. , Yamanaka S. . ( 2003a; ). Plesiocystis pacifica gen. nov., sp. nov., a marine myxobacterium that contains dihydrogenated menaquinone, isolated from the Pacific coasts of Japan. . Int J Syst Evol Microbiol 53:, 189–195. [CrossRef] [PubMed]
    [Google Scholar]
  13. Iizuka T. , Jojima Y. , Fudou R. , Tokura M. , Hiraishi A. , Yamanaka S. . ( 2003b; ). Enhygromyxa salina gen. nov., sp. nov., a slightly halophilic myxobacterium isolated from the coastal areas of Japan. . Syst Appl Microbiol 26:, 189–196. [CrossRef] [PubMed]
    [Google Scholar]
  14. Iizuka T. , Fudou R. , Jojima Y. , Ogawa S. , Yamanaka S. , Inukai Y. , Ojika M. . ( 2006a; ). Miuraenamides A and B, novel antimicrobial cyclic depsipeptides from a new slightly halophilic myxobacterium: taxonomy, production, and biological properties. . J Antibiot (Tokyo) 59:, 385–391. [CrossRef] [PubMed]
    [Google Scholar]
  15. Iizuka T. , Tokura M. , Jojima Y. , Hiraishi A. , Yamanaka S. , Fudou R. . ( 2006b; ). Enrichment and phylogenetic analysis of moderately thermophilic myxobacteria from hot springs in Japan. . Microbes Environ 21:, 189–199. [CrossRef]
    [Google Scholar]
  16. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  17. Lang E. , Kroppenstedt R. M. , Sträubler B. , Stackebrandt E. . ( 2008; ). Reclassification of Myxococcus flavescens Yamanaka et al. 1990VP as a later synonym of Myxococcus virescens Thaxter 1892AL.. Int J Syst Evol Microbiol 58:, 2607–2609. [CrossRef] [PubMed]
    [Google Scholar]
  18. Lueders T. , Kindler R. , Miltner A. , Friedrich M. W. , Kaestner M. . ( 2006; ). Identification of bacterial micropredators distinctively active in a soil microbial food web. . Appl Environ Microbiol 72:, 5342–5348. [CrossRef] [PubMed]
    [Google Scholar]
  19. Marmur J. . ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  20. McCurdy H. D. . ( 1989; ). Order Myxococcales Tchan, Pochon and Prévot 1948, 398AL (with contributions of E. R. Brockman, H. Reichenbach, and D. White). . In Bergey's Manual of Systematic Bacteriology, vol. 3, pp. 2139–2170. Edited by Staley J. T. , Bryant M. P. , Pfennig N. , Holt J. G. . . Baltimore, MA:: Williams and Wilkins;.
    [Google Scholar]
  21. Mohr K. I. , Garcia R. O. , Gerth K. , Irschik H. , Müller R. . ( 2012; ). Sandaracinus amylolyticus gen. nov., sp. nov., a starch degrading soil myxobacterium, and the description of Sandaracinaceae fam. nov.. Int J Syst Evol Microbiol 62:, 1191–1198. [CrossRef] [PubMed]
    [Google Scholar]
  22. Nishijima M. , Araki-Sakai M. , Sano H. . ( 1997; ). Identification of isoprenoid quinones by frit-FAB liquid chromatography-mass spectrometry for the chemotaxonomy of microorganisms. . J Microbiol Methods 28:, 113–122. [CrossRef]
    [Google Scholar]
  23. Ojika M. , Inukai Y. , Kito Y. , Hirata M. , Iizuka T. , Fudou R. . ( 2008; ). Miuraenamides: antimicrobial cyclic depsipeptides isolated from a rare and slightly halophilic myxobacterium. . Chem Asian J 3:, 126–133. [CrossRef] [PubMed]
    [Google Scholar]
  24. Reichenbach H. . ( 1989; ). Genus II. Nannocystis. . In Bergey's Manual of Systematic Bacteriology, vol. 3, pp. 2162–2166. Edited by Staley J. T. , Bryant M. P. , Pfennig N. , Holt J. G. . . Baltimore, MA:: Williams and Wilkins;.
    [Google Scholar]
  25. Reichenbach H. . ( 1999; ). The ecology of the myxobacteria. . Environ Microbiol 1:, 15–21. [CrossRef] [PubMed]
    [Google Scholar]
  26. Reichenbach H. . ( 2005; ). Order VIII. Myxococcales Tchan, Pochon and Prévot 1948, 398AL . . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2, (part c), pp. 1059–1144. Edited by Brenner D. J. , Krieg N. R. , Staley J. T. , Garrity G. M. . . New York:: Springer;.
    [Google Scholar]
  27. Reichenbach H. , Dworkin M. . ( 1992; ). The myxobacteria. . In The Prokaryotes, , 2nd edn., vol. IV, pp. 3416–3487. Edited by Balows A. , Trüper H. G. , Dworkin M. , Harder W. , Schleifer K.-H. . . Berlin, BRD:: Springer-Verlag;.[CrossRef]
    [Google Scholar]
  28. Rheinheimer G. . ( 1992; ). Environmental factors in microbial development: salinity. . In Aquatic Microbiology , , 4th edn., pp. 128–133, 166–169. Edited by Rheinheimer G. . . (Translated by N. Walker, from the German edition: Mikrobiologie der Gewässer. Jena, BRD: Gustav Fischer Verlag. 1991;). Chichester, UK:: John Wiley & Sons;.
    [Google Scholar]
  29. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  30. Schäberle T. F. , Goralski E. , Neu E. , Erol Ö. , Hölzl G. , Dörmann P. , Bierbaum G. , König G. M. . ( 2010; ). Marine myxobacteria as a source of antibiotics–comparison of physiology, polyketide-type genes and antibiotic production of three new isolates of Enhygromyxa salina . . Mar Drugs 8:, 2466–2479. [CrossRef] [PubMed]
    [Google Scholar]
  31. Shimkets L. , Woese C. R. . ( 1992; ). A phylogenetic analysis of the myxobacteria: basis for their classification. . Proc Natl Acad Sci U S A 89:, 9459–9463. [CrossRef] [PubMed]
    [Google Scholar]
  32. Spröer C. , Reichenbach H. , Stackebrandt E. . ( 1999; ). The correlation between morphological and phylogenetic classification of myxobacteria. . Int J Syst Bacteriol 49:, 1255–1262. [CrossRef] [PubMed]
    [Google Scholar]
  33. Stackebrandt E. , Goebel B. M. . ( 1994; ). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  34. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  35. Uno K. , Nakano S. . ( 2007; ). Effect of tidal current on sediment transport at the tidal flats. . J Coast Res 50: (Special Issue), 746–750.
    [Google Scholar]
  36. Weissman K. J. , Müller R. . ( 2010; ). Myxobacterial secondary metabolites: bioactivities and modes-of-action. . Nat Prod Rep 27:, 1276–1295. [CrossRef] [PubMed]
    [Google Scholar]
  37. Zhang Y.-Q. , Li Y.-Z. , Wang B. , Wu Z.-H. , Zhang C.-Y. , Gong X. , Qiu Z.-J. , Zhang Y. . ( 2005; ). Characteristics and living patterns of marine myxobacterial isolates. . Appl Environ Microbiol 71:, 3331–3336. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.040501-0
Loading
/content/journal/ijsem/10.1099/ijs.0.040501-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error