1887

Abstract

Bacterial strain THMBM1 was isolated from decomposing algal scum that was collected during an algal bloom in Lake Taihu, Wuxi City, Jiangsu Province, China. Cells of strain THMBM1 were Gram-negative, facultatively anaerobic, non-motile rods. Colonies on tryptic soy agar were translucent and shiny with entire edges; yellow flexirubin-type pigments were produced. Growth was observed at 15–45 °C (optimum 30–37 °C), at pH 5.0–9.0 (optimum pH 8.0) and in the presence of 0–4.0 % (w/v) NaCl (optimum 0–1.0 %). Strain THMBM1 contained MK-6 as the sole respiratory quinone and -homospermidine as the predominant polyamine. The predominant cellular fatty acids were iso-C (53.2 %), iso-C 3-OH (15.6 %) and iso-Cω9 (11.9 %). The polar lipid profile consisted of phosphatidylethanolamine and five unidentified lipids. The DNA G+C content was 36.8 mol% ( ). Strain THMBM1 was closely related to members of the genus , with 16S rRNA gene sequence similarities ranging from 92.9 to 97.2 %, the highest sequence similarities being with BCRC 17412 (97.2 %) and 5-1St1a (97.1 %). DNA–DNA relatedness between strain THMBM1 and JCM 21767 and DSM 18014 was 34.1  and 23.0 %, respectively. Based on these results, it is concluded that strain THMBM1 represents a novel species, for which the name sp. nov. is proposed. The type strain is THMBM1 ( = CGMCC 1.10941  = NBRC 108747). Emended descriptions of the genus and , and are also proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.040337-0
2013-03-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/3/913.html?itemId=/content/journal/ijsem/10.1099/ijs.0.040337-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990; ). Basic local alignment search tool. . J Mol Biol 215:, 403–410.[PubMed] [CrossRef]
    [Google Scholar]
  2. Barrow G. I. , Feltham R. K. A. . (editors) ( 1993; ). Cowan and Steel’s Manual for the Identification of Medical Bacteria, , 3rd edn.. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  3. Berg K. A. , Lyra C. , Sivonen K. , Paulin L. , Suomalainen S. , Tuomi P. , Rapala J. . ( 2009; ). High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. . ISME J 3:, 314–325. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bernardet J.-F. , Nakagawa Y. , Holmes B. . Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002; ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bernardet J.-F. , Vancanneyt M. , Matte-Tailliez O. , Grisez L. , Tailliez P. , Bizet C. , Nowakowski M. , Kerouault B. , Swings J. . ( 2005; ). Polyphasic study of Chryseobacterium strains isolated from diseased aquatic animals. . Syst Appl Microbiol 28:, 640–660. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bernardet J.-F. , Hugo C. , Bruun B. . ( 2006; ). The genera Chryseobacterium and Elizabethkingia . . In The Prokaryotes. A Handbook on the Biology of Bacteria, , 3rd edn., vol. 7, pp. 638–676. Edited by Dworkin M. , Falkow S. , Rosenberg E. , Schleifer K. H. , Stackebrandt E. . . New York:: Springer-Verlag;.
    [Google Scholar]
  7. Bernardet J.-F. , Hugo C. , Bruun B. . ( 2011; ). Genus VII. Chryseobacterium Vandamme et al. 1994. . In Bergey's Manual of Systematic Bacteriology, , 2nd edn., vol. 4, pp. 180–196. Edited by Whitman W. . . Baltimore:: The Williams & Wilkins Co;.
    [Google Scholar]
  8. Buck J. D. . ( 1982; ). Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. . Appl Environ Microbiol 44:, 992–993.[PubMed]
    [Google Scholar]
  9. Busse H. J. , Auling G. . ( 1988; ). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  10. Busse H. J. , Bunka S. , Hensel A. , Lubitz W. . ( 1997; ). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. . Int J Syst Bacteriol 47:, 698–708. [CrossRef]
    [Google Scholar]
  11. Campbell L. L. , Williams O. B. . ( 1951; ). A study of chitin-decomposing micro-organisms of marine origin. . J Gen Microbiol 5: (Suppl.), 894–905.[PubMed] [CrossRef]
    [Google Scholar]
  12. Campbell S. , Harada R. M. , Li Q. X. . ( 2008; ). Chryseobacterium arothri sp. nov., isolated from the kidneys of a pufferfish. . Int J Syst Evol Microbiol 58:, 290–293. [CrossRef] [PubMed]
    [Google Scholar]
  13. Chen M. J. , Chen F. Z. , Xing P. , Li H. B. , Wu Q. L. . ( 2010; ). Microbial eukaryotic community in response to Microcystis spp. bloom, as assessed by an enclosure experiment in Lake Taihu, China. . FEMS Microbiol Ecol 74:, 19–31. [CrossRef] [PubMed]
    [Google Scholar]
  14. Collins M. D. . ( 1985; ). Isoprenoid quinone analysis in classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M. , Minnikin D. E. . . London:: Academic Press;.
    [Google Scholar]
  15. De Beer H. , Hugo C. J. , Jooste P. J. , Willems A. , Vancanneyt M. , Coenye T. , Vandamme P. A. R. . ( 2005; ). Chryseobacterium vrystaatense sp. nov., isolated from raw chicken in a chicken-processing plant. . Int J Syst Evol Microbiol 55:, 2149–2153. [CrossRef] [PubMed]
    [Google Scholar]
  16. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  17. Fitch W. M. . ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  18. Grossart H. P. , Czub G. , Simon M. . ( 2006; ). Algae–bacteria interactions and their effects on aggregation and organic matter flux in the sea. . Environ Microbiol 8:, 1074–1084. [CrossRef] [PubMed]
    [Google Scholar]
  19. Hantsis-Zacharov E. , Senderovich Y. , Halpern M. . ( 2008; ). Chryseobacterium bovis sp. nov., isolated from raw cow’s milk. . Int J Syst Evol Microbiol 58:, 1024–1028. [CrossRef] [PubMed]
    [Google Scholar]
  20. Herzog P. , Winkler I. , Wolking D. , Kämpfer P. , Lipski A. . ( 2008; ). Chryseobacterium ureilyticum sp. nov., Chryseobacterium gambrini sp. nov., Chryseobacterium pallidum sp. nov. and Chryseobacterium molle sp. nov., isolated from beer-bottling plants. . Int J Syst Evol Microbiol 58:, 26–33. [CrossRef] [PubMed]
    [Google Scholar]
  21. Hugo C. J. , Segers P. , Hoste B. , Vancanneyt M. , Kersters K. . ( 2003; ). Chryseobacterium joostei sp. nov., isolated from the dairy environment. . Int J Syst Evol Microbiol 53:, 771–777. [CrossRef] [PubMed]
    [Google Scholar]
  22. Huss V. A. R. , Festl H. , Schleifer K. H. . ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef]
    [Google Scholar]
  23. Ilardi P. , Fernández J. , Avendaño-Herrera R. . ( 2009; ). Chryseobacterium piscicola sp. nov., isolated from diseased salmonid fish. . Int J Syst Evol Microbiol 59:, 3001–3005. [CrossRef] [PubMed]
    [Google Scholar]
  24. Im W.-T. , Yang J.-E. , Kim S.-Y. , Yi T.-H. . ( 2011; ). Chryseobacterium ginsenosidimutans sp. nov., a bacterium with ginsenoside-converting activity isolated from soil of a Rhus vernicifera-cultivated field. . Int J Syst Evol Microbiol 61:, 1430–1435. [CrossRef] [PubMed]
    [Google Scholar]
  25. Kämpfer P. , Dreyer U. , Neef A. , Dott W. , Busse H. J. . ( 2003; ). Chryseobacterium defluvii sp. nov., isolated from wastewater. . Int J Syst Evol Microbiol 53:, 93–97. [CrossRef] [PubMed]
    [Google Scholar]
  26. Kämpfer P. , Vaneechoutte M. , Lodders N. , De Baere T. , Avesani V. , Janssens M. , Busse H. J. , Wauters G. . ( 2009a; ). Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium . . Int J Syst Evol Microbiol 59:, 2421–2428. [CrossRef] [PubMed]
    [Google Scholar]
  27. Kämpfer P. , Vaneechoutte M. , Wauters G. . ( 2009b; ). Chryseobacterium arothri Campbell et al. 2008 is a later heterotypic synonym of Chryseobacterium hominis Vaneechoutte et al. 2007. . Int J Syst Evol Microbiol 59:, 695–697. [CrossRef] [PubMed]
    [Google Scholar]
  28. Kämpfer P. , Arun A. B. , Young C. C. , Chen W. M. , Sridhar K. R. , Rekha P. D. . ( 2010; ). Chryseobacterium arthrosphaerae sp. nov., isolated from the faeces of the pill millipede Arthrosphaera magna Attems. . Int J Syst Evol Microbiol 60:, 1765–1769. [CrossRef] [PubMed]
    [Google Scholar]
  29. Kim K. K. , Bae H.-S. , Schumann P. , Lee S.-T. . ( 2005; ). Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. . Int J Syst Evol Microbiol 55:, 133–138. [CrossRef] [PubMed]
    [Google Scholar]
  30. Kim K. K. , Lee K. C. , Oh H.-M. , Lee J.-S. . ( 2008; ). Chryseobacterium aquaticum sp. nov., isolated from a water reservoir. . Int J Syst Evol Microbiol 58:, 533–537. [CrossRef] [PubMed]
    [Google Scholar]
  31. Komagata K. , Suzuki K. . ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  32. Lányí B. . ( 1987; ). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19:, 1–67. [CrossRef]
    [Google Scholar]
  33. Lehman E. M. . ( 2007; ). Seasonal occurrence and toxicity of Microcystis in impoundments of the Huron River, Michigan, USA. . Water Res 41:, 795–802. [CrossRef] [PubMed]
    [Google Scholar]
  34. Li H. B. , Xing P. , Chen M. J. , Bian Y. Q. , Wu Q. L. . ( 2011; ). Short-term bacterial community composition dynamics in response to accumulation and breakdown of Microcystis blooms. . Water Res 45:, 1702–1710. [CrossRef] [PubMed]
    [Google Scholar]
  35. Li H. B. , Xing P. , Wu Q. L. . ( 2012; ). Characterization of the bacterial community composition in a hypoxic zone induced by Microcystis blooms in Lake Taihu, China. . FEMS Microbiol Ecol 79:, 773–784. [CrossRef] [PubMed]
    [Google Scholar]
  36. Marmur J. , Doty P. . ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef] [PubMed]
    [Google Scholar]
  37. Minnikin D. E. , O’Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  38. Paerl H. W. , Dyble J. , Moisander P. H. , Noble R. T. , Piehler M. F. , Pinckney J. L. , Steppe T. F. , Twomey L. , Valdes L. M. . ( 2003; ). Microbial indicators of aquatic ecosystem change: current applications to eutrophication studies. . FEMS Microbiol Ecol 46:, 233–246. [CrossRef] [PubMed]
    [Google Scholar]
  39. Park M. S. , Jung S. R. , Lee K. H. , Lee M. S. , Do J. O. , Kim S. B. , Bae K. S. . ( 2006; ). Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. . Int J Syst Evol Microbiol 56:, 433–438. [CrossRef] [PubMed]
    [Google Scholar]
  40. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  41. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc.;
  42. Shen F. T. , Kämpfer P. , Young C. C. , Lai W. A. , Arun A. B. . ( 2005; ). Chryseobacterium taichungense sp. nov., isolated from contaminated soil. . Int J Syst Evol Microbiol 55:, 1301–1304. [CrossRef] [PubMed]
    [Google Scholar]
  43. Smibert R. M. , Krieg N. R. . ( 1994; ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  44. Szoboszlay S. , Atzél B. , Kukolya J. , Tóth E. M. , Márialigeti K. , Schumann P. , Kriszt B. . ( 2008; ). Chryseobacterium hungaricum sp. nov., isolated from hydrocarbon-contaminated soil. . Int J Syst Evol Microbiol 58:, 2748–2754. [CrossRef] [PubMed]
    [Google Scholar]
  45. Tai C.-J. , Kuo H.-P. , Lee F.-L. , Chen H.-K. , Yokota A. , Lo C.-C. . ( 2006; ). Chryseobacterium taiwanense sp. nov., isolated from soil in Taiwan. . Int J Syst Evol Microbiol 56:, 1771–1776. [CrossRef] [PubMed]
    [Google Scholar]
  46. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  47. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  48. Vandamme P. , Bernardet J. F. , Segers P. , Kersters K. , Holmes B. . ( 1994; ). New perspectives in the classification of the Flavobacteria – description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom rev.. Int J Syst Bacteriol 44:, 827–831. [CrossRef]
    [Google Scholar]
  49. Vaneechoutte M. , Kämpfer P. , De Baere T. , Avesani V. , Janssens M. , Wauters G. . ( 2007; ). Chryseobacterium hominis sp. nov., to accommodate clinical isolates biochemically similar to CDC groups II-h and II-c. . Int J Syst Evol Microbiol 57:, 2623–2628. [CrossRef] [PubMed]
    [Google Scholar]
  50. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  51. Weon H.-Y. , Kim B.-Y. , Yoo S.-H. , Kwon S.-W. , Stackebrandt E. , Go S.-J. . ( 2008; ). Chryseobacterium soli sp. nov. and Chryseobacterium jejuense sp. nov., isolated from soil samples from Jeju, Korea. . Int J Syst Evol Microbiol 58:, 470–473. [CrossRef] [PubMed]
    [Google Scholar]
  52. Wu C. , Lu X. , Qin M. , Wang Y. , Ruan J. . ( 1989; ). Analysis of menaquinone compound in microbial cells by HPLC. . Microbiology 16:, 176–178.
    [Google Scholar]
  53. Xing P. , Guo L. , Tian W. , Wu Q. L. . ( 2011; ). Novel Clostridium populations involved in the anaerobic degradation of Microcystis blooms. . ISME J 5:, 792–800. [CrossRef] [PubMed]
    [Google Scholar]
  54. Zhang D. , Yang H. , Zhang W. , Huang Z. , Liu S.-J. . ( 2003; ). Rhodocista pekingensis sp. nov., a cyst-forming phototrophic bacterium from a municipal wastewater treatment plant. . Int J Syst Evol Microbiol 53:, 1111–1114. [CrossRef] [PubMed]
    [Google Scholar]
  55. Zhang J.-Y. , Liu X.-Y. , Liu S.-J. . ( 2011; ). Phycicoccus cremeus sp. nov., isolated from forest soil, and emended description of the genus Phycicoccus . . Int J Syst Evol Microbiol 61:, 71–75. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.040337-0
Loading
/content/journal/ijsem/10.1099/ijs.0.040337-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error