1887

Abstract

A Gram-negative, motile, rod-shaped bacterial strain, designated Ad2, was isolated from a marine sponge, , which was collected from a semi-enclosed marine lake in Ireland. Strain Ad2 grew optimally at 24 °C, at pH 7.0 and in the presence of 3 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain Ad2 clustered with members of the genus , and showed 97.3–98.2 % sequence similarity to the type strains of recognized species. DNA–DNA relatedness values between strain Ad2 and the type strains of other species were <27 %. The DNA G+C content of strain Ad2 was 50.5 mol%. The major fatty acid was 18 : 1ω7. Differences in phenotypic properties, together with phylogenetic and DNA–DNA hybridization analyses, indicated that strain Ad2 represented a novel species of the genus . The name sp. nov. is proposed, with Ad2 ( = DSM 24994 = NCIMB 14761) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.040196-0
2013-01-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/1/141.html?itemId=/content/journal/ijsem/10.1099/ijs.0.040196-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  3. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  4. Enticknap J. J., Kelly M., Peraud O., Hill R. T.. ( 2006;). Characterization of a culturable alphaproteobacterial symbiont common to many marine sponges and evidence for vertical transmission via sponge larvae. . Appl Environ Microbiol 72:, 3724–3732. [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  6. Fitch W. M.. ( 1971;). Towards defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  7. Flemer B., Kennedy J., Margassery L. M., Morrissey J. P., O’Gara F., Dobson A. D. W.. ( 2012;). Diversity and antimicrobial activities of microbes from two Irish marine sponges, Suberites carnosus and Leucosolenia sp.. J Appl Microbiol 112:, 289–301. [CrossRef][PubMed]
    [Google Scholar]
  8. Fukunaga Y., Kurahashi M., Tanaka K., Yanagi K., Yokota A., Harayama S.. ( 2006;). Pseudovibrio ascidiaceicola sp. nov., isolated from ascidians (sea squirts). . Int J Syst Evol Microbiol 56:, 343–347. [CrossRef][PubMed]
    [Google Scholar]
  9. Hentschel U., Schmid M., Wagner M., Fieseler L., Gernert C., Hacker J.. ( 2001;). Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. . FEMS Microbiol Ecol 35:, 305–312. [CrossRef][PubMed]
    [Google Scholar]
  10. Hosoya S., Yokota A.. ( 2007;). Pseudovibrio japonicus sp. nov., isolated from coastal seawater in Japan. . Int J Syst Evol Microbiol 57:, 1952–1955. [CrossRef][PubMed]
    [Google Scholar]
  11. Huss V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef]
    [Google Scholar]
  12. Kennedy J., Baker P., Piper C., Cotter P. D., Walsh M., Mooij M. J., Bourke M. B., Rea M. C., O’Connor P. M.. & other authors ( 2009;). Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from Irish waters. . Mar Biotechnol (NY) 11:, 384–396. [CrossRef][PubMed]
    [Google Scholar]
  13. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  14. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E.. ( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. . Int J Syst Bacteriol 38:, 358–361. [CrossRef]
    [Google Scholar]
  15. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acids Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  16. Leifson E.. ( 1963;). Determination of carbohydrate metabolism of marine bacteria. . J Bacteriol 85:, 1183–1184.[PubMed]
    [Google Scholar]
  17. Menezes C. B., Bonugli-Santos R. C., Miqueletto P. B., Passarini M. R., Silva C. H., Justo M. R., Leal R. R., Fantinatti-Garboggini F., Oliveira V. M.. & other authors ( 2010;). Microbial diversity associated with algae, ascidians and sponges from the north coast of São Paulo state, Brazil. . Microbiol Res 165:, 466–482. [CrossRef][PubMed]
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  19. Miller L. T.. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16:, 584–586.[PubMed]
    [Google Scholar]
  20. Muscholl-Silberhorn A., Thiel V., Imhoff J. F.. ( 2008;). Abundance and bioactivity of cultured sponge-associated bacteria from the Mediterranean sea. . Microb Ecol 55:, 94–106. [CrossRef][PubMed]
    [Google Scholar]
  21. O’Halloran J. A., Barbosa T. M., Morrissey J. P., Kennedy J., O’Gara F., Dobson A. D. W.. ( 2011;). Diversity and antimicrobial activity of Pseudovibrio spp. from Irish marine sponges. . J Appl Microbiol 110:, 1495–1508. [CrossRef][PubMed]
    [Google Scholar]
  22. Penesyan A., Tebben J., Lee M., Thomas T., Kjelleberg S., Harder T., Egan S.. ( 2011;). Identification of the antibacterial compound produced by the marine epiphytic bacterium Pseudovibrio sp. D323 and related sponge-associated bacteria. . Mar Drugs 9:, 1391–1402. [CrossRef][PubMed]
    [Google Scholar]
  23. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  24. Santos O. C., Pontes P. V., Santos J. F., Muricy G., Giambiagi-deMarval M., Laport M. S.. ( 2010;). Isolation, characterization and phylogeny of sponge-associated bacteria with antimicrobial activities from Brazil. . Res Microbiol 161:, 604–612. [CrossRef][PubMed]
    [Google Scholar]
  25. Sertan-de Guzman A. A., Predicala R. Z., Bernardo E. B., Neilan B. A., Elardo S. P., Mangalindan G. C., Tasdemir D., Ireland C. M., Barraquio W. L., Concepcion G. P.. ( 2007;). Pseudovibrio denitrificans strain Z143-1, a heptylprodigiosin-producing bacterium isolated from a Philippine tunicate. . FEMS Microbiol Lett 277:, 188–196. [CrossRef][PubMed]
    [Google Scholar]
  26. Shieh W. Y., Lin Y.-T., Jean W. D.. ( 2004;). Pseudovibrio denitrificans gen. nov., sp. nov., a marine, facultatively anaerobic, fermentative bacterium capable of denitrification. . Int J Syst Evol Microbiol 54:, 2307–2312. [CrossRef][PubMed]
    [Google Scholar]
  27. Smibert R. M., Kreig N. R.. ( 1994;). Phenotypic characteristics. . In Methods for General and Molecular Biology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  28. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  29. Thiel V., Imhoff J. F.. ( 2003;). Phylogenetic identification of bacteria with antimicrobial activities isolated from Mediterranean sponges. . Biomol Eng 20:, 421–423. [CrossRef][PubMed]
    [Google Scholar]
  30. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  31. Vizcaino M. I.. ( 2011;). The chemical defense of Pseudopterogorgia americana: a focus on the antimicrobial potential of a Pseudovibrio sp. PhD thesis, University of South Carolina, USA.
  32. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  33. Webster N. S., Hill R. T.. ( 2001;). The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an α-proteobacterium. . Mar Biol 138:, 843–851. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.040196-0
Loading
/content/journal/ijsem/10.1099/ijs.0.040196-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error