1887

Abstract

Two Gram-staining-negative, aerobic, non-spore-forming rod-shaped, non-motile bacteria, designated strains R156-2 and T58-2 were isolated from the roots of The colonies were yellow-pigmented. On the basis of 16S rRNA gene sequence similarity, strains R156-2 and T58-2 were shown to be members of the genus . Strains R156-2 and T58-2 showed the greatest level of sequence similarity with (96.0–96.3 %). The major menaquinone was MK-7. The main cellular fatty acids were iso-C, Cω5 and iso-C 3-OH. Phenotypic and genotypic analyses indicated that strains R156-2 and T58-2 could not be assigned to any recognized species. Therefore, strains R156-2 and T58-2 represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is R156-2 ( = ACCC 05363 = KCTC 23738). The DNA G+C content of this strain is 51.9 mol%.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.040014-0
2013-05-01
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/5/1800.html?itemId=/content/journal/ijsem/10.1099/ijs.0.040014-0&mimeType=html&fmt=ahah

References

  1. Busse H.-J. , Auling G. . ( 1988; ). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  2. Busse H.-J. , Bunka S. , Hensel A. , Lubitz W. . ( 1997; ). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. . Int J Syst Bacteriol 47:, 698–708. [CrossRef]
    [Google Scholar]
  3. Collins M. D. , Jones D. . ( 1981; ). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. . Microbiol Rev 45:, 316–354.[PubMed]
    [Google Scholar]
  4. Dong X.-Z. , Cai M.-Y. . (editors) ( 2001; ). Determination of biochemical properties. . In Manual for the Systematic Identification of General Bacteria, pp. 370–398. Beijing:: Science Press; (in Chinese).
    [Google Scholar]
  5. Dong X. , Xin Y. , Jian W. , Liu X. , Ling D. . ( 2000; ). Bifidobacterium thermacidophilum sp. nov., isolated from an anaerobic digester. . Int J Syst Evol Microbiol 50:, 119–125. [CrossRef] [PubMed]
    [Google Scholar]
  6. Fautz E. , Reichenbach H. . ( 1980; ). A simple test for flexirubin-type pigments. . FEMS Microbiol Lett 8:, 87–91. [CrossRef]
    [Google Scholar]
  7. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  8. Kämpfer P. , Young C. C. , Sridhar K. R. , Arun A. B. , Lai W. A. , Shen F. T. , Rekha P. D. . ( 2006; ). Transfer of [Flexibacter] sancti, [Flexibacter] filiformis, [Flexibacter] japonensis and [Cytophaga] arvensicola to the genus Chitinophaga and description of Chitinophaga skermanii sp. nov.. Int J Syst Evol Microbiol 56:, 2223–2228. [CrossRef] [PubMed]
    [Google Scholar]
  9. Kämpfer P. , Lodders N. , Falsen E. . ( 2011; ). Hydrotalea flava gen. nov., sp. nov., a new member of the phylum Bacteroidetes and allocation of the genera Chitinophaga, Sediminibacterium, Lacibacter, Flavihumibacter, Flavisolibacter, Niabella, Niastella, Segetibacter, Parasegetibacter, Terrimonas, Ferruginibacter, Filimonas and Hydrotalea to the family Chitinophagaceae fam. nov.. Int J Syst Evol Microbiol 61:, 518–523. [CrossRef] [PubMed]
    [Google Scholar]
  10. Kim M. K. , Jung H.-Y. . ( 2007; ). Chitinophaga terrae sp. nov., isolated from soil. . Int J Syst Evol Microbiol 57:, 1721–1724. [CrossRef] [PubMed]
    [Google Scholar]
  11. Lane D. J. . ( 1991; ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . . Chichester:: Wiley;.
    [Google Scholar]
  12. Lee H.-G. , An D.-S. , Im W.-T. , Liu Q.-M. , Na J.-R. , Cho D. H. , Jin C. W. , Lee S.-T. , Yang D.-C. . ( 2007; ). Chitinophaga ginsengisegetis sp. nov. and Chitinophaga ginsengisoli sp. nov., isolated from soil of a ginseng field in South Korea. . Int J Syst Evol Microbiol 57:, 1396–1401. [CrossRef] [PubMed]
    [Google Scholar]
  13. Lee D. W. , Lee J.-E. , Lee S. D. . ( 2009; ). Chitinophaga rupis sp. nov., isolated from soil. . Int J Syst Evol Microbiol 59:, 2830–2833. [CrossRef] [PubMed]
    [Google Scholar]
  14. Liu L. , Sun L. , Zhang R. , Yao N. , Li L. . ( 2010; ). Diversity of IAA-producing endophytic bacteria isolated from the roots of Cymbidium goeringii . . Biodiversity Science 18:, 109–119.[CrossRef]
    [Google Scholar]
  15. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  16. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  17. Sangkhobol V. , Skerman V. B. D. . ( 1981; ). Chitinophaga, a new genus of chitinolytic myxobacteria. . Int J Syst Bacteriol 31:, 285–293. [CrossRef]
    [Google Scholar]
  18. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc.;
  19. Shin Y. K. , Lee J.-S. , Chun C. O. , Kim H.-J. , Park Y.-H. . ( 1996; ). Isoprenoid quinone profiles of the Leclercia adecarboxylata KCTC 1036T . . J Microbiol Biotechnol 6:, 68–69.
    [Google Scholar]
  20. Sun L. , Shao H. , Liu L. , Zhang R. , Zhao L. , Li L. , Yao N. . ( 2011; ). [Diversity of siderophore-producing endophytic bacteria of Cymbidium goeringii roots]. . Wei Sheng Wu Xue Bao 51:, 189–195.[PubMed]
    [Google Scholar]
  21. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). MEGA4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  22. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  23. Weon H.-Y. , Yoo S.-H. , Kim Y.-J. , Son J.-A. , Kim B.-Y. , Kwon S.-W. , Koo B. S. . ( 2009; ). Chitinophaga niabensis sp. nov. and Chitinophaga niastensis sp. nov., isolated from soil. . Int J Syst Evol Microbiol 59:, 1267–1271. [CrossRef] [PubMed]
    [Google Scholar]
  24. Yasir M. , Chung E. J. , Song G. C. , Bibi F. , Jeon C. O. , Chung Y. R. . ( 2011; ). Chitinophaga eiseniae sp. nov., isolated from vermicompost. . Int J Syst Evol Microbiol 61:, 2373–2378. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.040014-0
Loading
/content/journal/ijsem/10.1099/ijs.0.040014-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error