1887

Abstract

A Gram-reaction-negative, motile, non-violet-pigmented, rod-shaped bacterial strain, designated E1, was isolated from Arctic lake sediment. Growth occurred at 4 °C–28 °C (optimum, 18 °C), at pH 4–11(optimum, 9–10) and in the presence of 0–1 % (w/v) NaCl. The taxonomic position of E1 was analysed using a polyphasic approach. Strain E1 exhibited 16S rRNA gene sequence similarity value of 98.1 % with respect to the type strain of , but no more than 93 % with the type strains of other recognized species. A further DNA–DNA hybridization experiment was conducted, which demonstrated unambiguously that strain E1 was distinct from ATCC 33051 (51.3 % relatedness). The DNA G+C content of strain E1 was 52.3 mol%. Chemotaxonomic data [Q-8 as the monospecific respiratory quinone and summed feature 3 (Cω7 and/or Cω6 56.1 %) and C (18.8 %) as the major cellular fatty acids] supported the affiliation of strain E1 to the genus . However, the results of physiological and biochemical tests allowed phenotypic differentiation of strain E1 from ATCC 33051. On the basis of phenotypic and genotypic properties, strain E1 represents a novel species of genus , for which the name sp. nov. is proposed. The type strain is E1 ( = CCTCC AB 2010224 = NRRL B-59456).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.039982-0
2013-04-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/4/1464.html?itemId=/content/journal/ijsem/10.1099/ijs.0.039982-0&mimeType=html&fmt=ahah

References

  1. Bowman J. P.. ( 2000;). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov.. Int J Syst Evol Microbiol 50:, 1861–1868.[PubMed]
    [Google Scholar]
  2. Christensen H., Angen Ø., Mutters R., Olsen J. E., Bisgaard M.. ( 2000;). DNA–DNA hybridization determined in micro-wells using covalent attachment of DNA. . Int J Syst Evol Microbiol 50:, 1095–1102. [CrossRef][PubMed]
    [Google Scholar]
  3. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W.. ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef][PubMed]
    [Google Scholar]
  4. Doetsch R. N.. ( 1981;). Determinative methods of light microscopy. . In Manual of Methods for General Bacteriology, pp. 21–33. Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. H... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  6. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  7. Fitch W. M.. ( 1971;). Towards defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  8. Gillis M., Logan N. A.. ( 2005;). Genus IV. Chromobacterium Bergonzini 1881, 153AL. . In Bergey's Manual of Systematic Bacteriology, , 2nd edn., vol. 2, pp. 824–827. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M... New York:: Springer;. [CrossRef]
    [Google Scholar]
  9. Kämpfer P., Rosselló-Mora R., Hermansson M., Persson F., Huber B., Falsen E., Busse H.-J.. ( 2007;). Undibacterium pigrum gen. nov., sp. nov., isolated from drinking water. . Int J Syst Evol Microbiol 57:, 1510–1515. [CrossRef][PubMed]
    [Google Scholar]
  10. Kämpfer P., Busse H.-J., Scholz H.-C.. ( 2009;). Chromobacterium piscinae sp. nov. and Chromobacterium pseudoviolaceum sp. nov., from environmental samples. . Int J Syst Evol Microbiol 59:, 2486–2490. [CrossRef][PubMed]
    [Google Scholar]
  11. Kim B.-Y., Weon H.-Y., Yoo S.-H., Chen W.-M., Kwon S.-W., Go S.-J., Stackebrandt E.. ( 2006;). Chitinimonas koreensis sp. nov., isolated from greenhouse soil in Korea. . Int J Syst Evol Microbiol 56:, 1761–1764. [CrossRef][PubMed]
    [Google Scholar]
  12. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  13. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–147. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  14. Lincoln S. P., Fermor T. R., Tindall B. J.. ( 1999;). Janthinobacterium agaricidamnosum sp. nov., a soft rot pathogen of Agaricus bisporus. . Int J Syst Evol Microbiol 49:, 1557–1589.
    [Google Scholar]
  15. Logan N. A.. ( 1989;). Numerical taxonomy of violet-pigmented, Gram-negative bacteria and description of Iodobacter fluviatilis gen. nov., comb. nov. . Int J Syst Bacteriol 39:, 450–456. [CrossRef]
    [Google Scholar]
  16. Logan N. A.. ( 2005;). Iodobacter. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn.. pp. 833–835. Edited by Garrity G. et al.. New York:: Springer;. [CrossRef]
    [Google Scholar]
  17. Logan N. A., Moss M. O.. ( 1992;). Identification of Chromobacterium, Janthinobacterium, and Iodobacter species. . In Identification Methods in Applied and Environmental Microbiology, Technical Series, vol. 29, pp. 183–192. Edited by Board R. G., Jones D., Skinner F. A... Bedford, UK:: Society for Applied Bacteriology;.
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  19. Moss M. O., Bryant T. N.. ( 1982;). DNA:rRNA hybridization studies of Chromobacterium fluviatile.. J Gen Microbiol 128:, 829–834.[PubMed]
    [Google Scholar]
  20. Moss M. O., Ryall C.. ( 1981;). The genus Chromobacterium. . In The Prokaryotes, pp. 1355–1364. Edited by Starr M. P., Stolp H., Truper H. G., Balows A., Schlegel H. G... Berlin:: Springer;.
    [Google Scholar]
  21. Moss M. O., Ryall C., Logan N. A.. ( 1978;). The classification and characterization of chromobacteria from a lowland river. . J Gen Microbiol 105:, 11–21. [CrossRef]
    [Google Scholar]
  22. Muramatsu Y., Suzuki K.-i., Nakagawa Y.. ( 2010;). Silvimonas iriomotensis sp. nov. and Silvimonas amylolytica sp. nov., new members of the class Betaproteobacteria isolated from the subtropical zone in Japan. . Int J Syst Evol Microbiol 60:, 174–178. [CrossRef][PubMed]
    [Google Scholar]
  23. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  24. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty 349 acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  25. Sato K.-K., Kato Y.-C., Taguchi G., Nogawa M., Yokota A., Shimosaka M.. ( 2009;). Chitiniphilus shinanonensis gen. nov., sp. nov., a novel chitin-degrading bacterium belonging to Betaproteobacteria. . J Gen Appl Microbiol 55:, 147–153. [CrossRef][PubMed]
    [Google Scholar]
  26. Schildkraut C., Lifson S.. ( 1965;). Dependence of the melting temperature of DNA on salt concentration. . Biopolymers 3:, 195–208. [CrossRef][PubMed]
    [Google Scholar]
  27. Shivaji S., Ray M. K., Seshu Kumar G., Reddy G. S. N., Saisree L., Wynn-Williams D. D.. ( 1991;). Identification of Janthinobacterium lividum from the soils of the island of Scotia Ridge and from Antarctic peninsula. . Polar Biol 11:, 267–271. [CrossRef]
    [Google Scholar]
  28. Sivendra R., Lo H. S., Lim K. T.. ( 1975;). Identification of Chromobacterium violaceum: pigmented and non-pigmented strains. . J Gen Microbiol 90:, 21–31. [CrossRef][PubMed]
    [Google Scholar]
  29. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  30. Sneath P. H. A.. ( 1974;). Genus Chromobacterium Bergonzini 1881, 153. . In Bergey's manual of determinative bacteriology, 8th ed, p, 354–357. Edited by Buchanan R. E., Gibbons N. E... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  31. Sneath P. H. A.. ( 1984a;). Genus Chromobacterium Bergonzini 1881, 153AL. . In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 580–582. Edited by Krieg N. R., Holt J. G... Baltimore:: The Williams & Wilkins Co;.
    [Google Scholar]
  32. Sneath P. H. A.. ( 1984b;). Genus Janthinobacterium De Ley, Segers & Gillis 1978, 164AL. . In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 376–377. Edited by Krieg N. R., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  33. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  34. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  35. Wetmur J. G., Davidson N.. ( 1968;). Kinetics of renaturation of DNA. . J Mol Biol 31:, 349–370. [CrossRef][PubMed]
    [Google Scholar]
  36. Wynn-Williams D. D.. ( 1983;). Distribution and characteristics of Chromobacterium in the maritime and sub-Antarctic. . Polar Biol 2:, 101–108. [CrossRef]
    [Google Scholar]
  37. Xie C. H., Yokota A.. ( 2003;). Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. . J Gen Appl Microbiol 49:, 345–349. [CrossRef][PubMed]
    [Google Scholar]
  38. Yang C.-S., Sheu S.-Y., Young C.-C., Arun A. B., Cheng C.-Y., Chen W.-M.. ( 2010;). Chitinibacter alvei sp. nov., isolated from stream water. . Int J Syst Evol Microbiol 60:, 1760–1764. [CrossRef][PubMed]
    [Google Scholar]
  39. Yoon J.-H., Kim H., Kim S.-B., Kim H.-J., Kim W. Y., Lee S. T., Goodfellow M., Park Y.-H.. ( 1996;). Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. . Int J Syst Bacteriol 46:, 502–505. [CrossRef]
    [Google Scholar]
  40. Young C. C., Arun A. B., Lai W. A., Chen W. M., Chou J. H., Shen F. T., Rekha P. D., Kämpfer P.. ( 2008;). Chromobacterium aquaticum sp. nov., isolated from spring water samples. . Int J Syst Evol Microbiol 58:, 877–880. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.039982-0
Loading
/content/journal/ijsem/10.1099/ijs.0.039982-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error