1887

Abstract

Five strains, JPY461, JPY359, JPY389, DPU-3 and STM4206 were isolated from nitrogen-fixing nodules on the roots of spp. and their taxonomic positions were investigated using a polyphasic approach. All five strains grew at 15–40 °C (optimum, 30–37 °C), at pH 4.0–8.0 (optimum, pH 6.0–7.0) and with 0–1 % (w/v) NaCl [optimum, 0 % (w/v)]. On the basis of 16S rRNA gene sequence analysis, a representative strain (JPY461) showed 97.2 % sequence similarity to the closest related species SA33, a similarity of 97.2 % to KMY02, 97.1 % to STM815 and 97.1 % to LMG 20598. The predominant fatty acids of the five novel strains were summed feature 2 (comprising C iso I and/or C 3-OH), summed feature 3 (comprising C 7 and/or C 6), C , C 3-OH, C cyclo, C 7 and C cyclo 8. The major isoprenoid quinone was Q-8 and the DNA G+C content of the strains was 63.0–65.0 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified aminophospholipid, an unidentified aminolipid and several unidentified phospholipids. The DNA–DNA relatedness of the novel strain with respect to recognized species of the genus was less than 54 %. On the basis of 16S rRNA and gene sequence similarities, chemotaxonomic and phenotypic data, the five strains represent a novel species in the genus , for which the name sp. nov. is proposed with the type strain, JPY461 ( = LMG 26031 = BCRC 80259 = KCTC 23308).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.039859-0
2013-02-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/2/435.html?itemId=/content/journal/ijsem/10.1099/ijs.0.039859-0&mimeType=html&fmt=ahah

References

  1. Achouak W. , Christen R. , Barakat M. , Martel M.-H. , Heulin T. . ( 1999; ). Burkholderia caribensis sp. nov., an exopolysaccharide-producing bacterium isolated from vertisol microaggregates in Martinique. . Int J Syst Bacteriol 49:, 787–794. [CrossRef] [PubMed]
    [Google Scholar]
  2. Aizawa T. , Bao Ve N. , Vijarnsorn P. , Nakajima M. , Sunairi M. . ( 2010; ). Burkholderia acidipaludis sp. nov., aluminum-tolerant bacteria isolated from Chinese water chestnut (Eleocharis dulcis) growing in highly acidic swamps in South-East Asia. . Int J Syst Evol Microbiol 60:, 2036–2041. [CrossRef] [PubMed]
    [Google Scholar]
  3. Barrett C. F. , Parker M. A. . ( 2005; ). Prevalence of Burkholderia sp. nodule symbionts on four mimosoid legumes from Barro Colorado Island, Panama. . Syst Appl Microbiol 28:, 57–65. [CrossRef] [PubMed]
    [Google Scholar]
  4. Barrett C. F. , Parker M. A. . ( 2006; ). Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. nodule bacteria on two Mimosa spp. in Costa Rica. . Appl Environ Microbiol 72:, 1198–1206. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bontemps C. , Elliott G. N. , Simon M. F. , Dos Reis Júnior F. B. , Gross E. , Lawton R. C. , Neto N. E. , de Fátima Loureiro M. , De Faria S. M. . & other authors ( 2010; ). Burkholderia species are ancient symbionts of legumes. . Mol Ecol 19:, 44–52. [CrossRef] [PubMed]
    [Google Scholar]
  6. Breznak J. A. , Costilow R. N. . ( 1994; ). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, pp. 137–154. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, D.C.:: American Society for Microbiology;.
    [Google Scholar]
  7. Chen W. M. , Laevens S. , Lee T. M. , Coenye T. , De Vos P. , Mergeay M. , Vandamme P. . ( 2001; ). Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. . Int J Syst Evol Microbiol 51:, 1729–1735. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chen W. M. , James E. K. , Prescott A. R. , Kierans M. , Sprent J. I. . ( 2003a; ). Nodulation of Mimosa spp. by the β-proteobacterium Ralstonia taiwanensis . . Mol Plant Microbe Interact 16:, 1051–1061. [CrossRef] [PubMed]
    [Google Scholar]
  9. Chen W. M. , Moulin L. , Bontemps C. , Vandamme P. , Béna G. , Boivin-Masson C. . ( 2003b; ). Legume symbiotic nitrogen fixation by β-proteobacteria is widespread in nature. . J Bacteriol 185:, 7266–7272. [CrossRef] [PubMed]
    [Google Scholar]
  10. Chen W. M. , de Faria S. M. , Straliotto R. , Pitard R. M. , Simões-Araùjo J. L. , Chou J. H. , Chou Y. J. , Barrios E. , Prescott A. R. . & other authors ( 2005a; ). Proof that Burkholderia strains form effective symbioses with legumes: a study of novel Mimosa-nodulating strains from South America. . Appl Environ Microbiol 71:, 7461–7471. [CrossRef] [PubMed]
    [Google Scholar]
  11. Chen W. M. , James E. K. , Chou J. H. , Sheu S. Y. , Yang S. Z. , Sprent J. I. . ( 2005b; ). β-rhizobia from Mimosa pigra, a newly discovered invasive plant in Taiwan. . New Phytol 168:, 661–675. [CrossRef] [PubMed]
    [Google Scholar]
  12. Chen W. M. , James E. K. , Coenye T. , Chou J. H. , Barrios E. , de Faria S. M. , Elliott G. N. , Sheu S. Y. , Sprent J. I. , Vandamme P. . ( 2006; ). Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. . Int J Syst Evol Microbiol 56:, 1847–1851. [CrossRef] [PubMed]
    [Google Scholar]
  13. Chen W. M. , de Faria S. M. , James E. K. , Elliott G. N. , Lin K. Y. , Chou J. H. , Sheu S. Y. , Cnockaert M. , Sprent J. I. , Vandamme P. . ( 2007; ). Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella . . Int J Syst Evol Microbiol 57:, 1055–1059. [CrossRef] [PubMed]
    [Google Scholar]
  14. Chen W. M. , de Faria S. M. , Chou J. H. , James E. K. , Elliott G. N. , Sprent J. I. , Bontemps C. , Young J. P. W. , Vandamme P. . ( 2008; ). Burkholderia sabiae sp. nov., isolated from root nodules of Mimosa caesalpiniifolia . . Int J Syst Evol Microbiol 58:, 2174–2179. [CrossRef] [PubMed]
    [Google Scholar]
  15. Collins M. D. . ( 1985; ). Isoprenoid quinine analysis in classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M. , Minnikin D. E. . . London:: Academic Press;.
    [Google Scholar]
  16. Embley T. M. , Wait R. . ( 1994; ). Structural lipids of eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 121–161. Edited by Goodfellow M. , O’Donnell A. G. . . England:: John Wiley & Sons Ltd;.
    [Google Scholar]
  17. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  18. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  19. Felsenstein J. . ( 1993; ). phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  20. Gibson A. H. . ( 1963; ). Physical environment and symbiotic nitrogen fixation. I. The effect of root temperature on recently nodulated Trifolium subterraneum L. plants. . Aust J Biol Sci 16:, 28–42.
    [Google Scholar]
  21. Gillis M. , Van T. V. , Bardin R. , Goor M. , Hebbar P. , Willems A. , Segers P. , Kersters K. , Heulin T. , Fernandez M. P. . ( 1995; ). Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. . Int J Syst Bacteriol 45:, 274–289. [CrossRef]
    [Google Scholar]
  22. Goris J. , Dejonghe W. , Falsen E. , De Clerck E. , Geeraerts B. , Willems A. , Top E. M. , Vandamme P. , De Vos P. . ( 2002; ). Diversity of transconjugants that acquired plasmid pJP4 or pEMT1 after inoculation of a donor strain in the A- and B-horizon of an agricultural soil and description of Burkholderia hospita sp. nov. and Burkholderia terricola sp. nov.. Syst Appl Microbiol 25:, 340–352. [CrossRef] [PubMed]
    [Google Scholar]
  23. Hall T. A. . ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  24. James E. K. , Crawford R. M. M. . ( 1998; ). Effect of oxygen availability on nitrogen fixation by two Lotus species under flooded conditions. . J Exp Bot 49:, 599–610.[CrossRef]
    [Google Scholar]
  25. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. . & other authors ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  26. Kimura M. . ( 1983; ). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  27. Kluge A. G. , Farris F. S. . ( 1969; ). Quantitative phyletics and the evolution of anurans. . Syst Zool 18:, 1–32. [CrossRef]
    [Google Scholar]
  28. Maidak B. L. , Cole J. R. , Lilburn T. G. , Parker C. T. Jr , Saxman P. R. , Farris R. J. , Garrity G. M. , Olsen G. J. , Schmidt T. M. , Tiedje J. M. . ( 2001; ). The RDP-II (Ribosomal Database Project). . Nucleic Acids Res 29:, 173–174. [CrossRef] [PubMed]
    [Google Scholar]
  29. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  30. Miller P. H. , Wiggs L. S. , Miller J. M. . ( 1995; ). Evaluation of AnaeroGen system for growth of anaerobic bacteria. . J Clin Microbiol 33:, 2388–2391.[PubMed]
    [Google Scholar]
  31. Mishra R. P. , Tisseyre P. , Melkonian R. , Chaintreuil C. , Miché L. , Klonowska A. , Gonzalez S. , Bena G. , Laguerre G. , Moulin L. . ( 2012; ). Genetic diversity of Mimosa pudica rhizobial symbionts in soils of French Guiana: investigating the origin and diversity of Burkholderia phymatum and other beta-rhizobia. . FEMS Microbiol Ecol 79:, 487–503. [CrossRef] [PubMed]
    [Google Scholar]
  32. Murray R. G. E. , Doetsch R. N. , Robinow C. F. . ( 1994; ). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, D.C.:: American Society for Microbiology;.
    [Google Scholar]
  33. Powers E. M. . ( 1995; ). Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. . Appl Environ Microbiol 61:, 3756–3758.[PubMed]
    [Google Scholar]
  34. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  35. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc.;
  36. Smibert R. M. , Krieg N. R. . ( 1994; ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, D. C.:: American Society for Microbiology;.
    [Google Scholar]
  37. Suárez-Moreno Z. R. , Caballero-Mellado J. , Coutinho B. G. , Mendonça-Previato L. , James E. K. , Venturi V. . ( 2012; ). Common features of environmental and potentially beneficial plant-associated Burkholderia . . Microb Ecol 63:, 249–266. [CrossRef] [PubMed]
    [Google Scholar]
  38. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  39. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  40. Vandamme P. , Goris J. , Chen W. M. , de Vos P. , Willems A. . ( 2002; ). Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. . Syst Appl Microbiol 25:, 507–512. [CrossRef] [PubMed]
    [Google Scholar]
  41. Vandamme P. A. R. , Govan J. R. W. , LiPuma J. J. . ( 2007; ). Diversity and role of Burkholderia spp. . In Burkholderia Molecular Microbiology and Genomics, vol. 1, pp. 1–28. Edited by Coenye T. , Vandamme P. . . Wymondham, UK:: Horizon Bioscience;.
    [Google Scholar]
  42. Vincent J. M. . ( 1970; ). A Manual for the Practical Study of the Root-Nodule Bacteria. Oxford:: Blackwell Scientific;.
    [Google Scholar]
  43. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  44. Yabuuchi E. , Kosako Y. , Oyaizu H. , Yano I. , Hotta H. , Hashimoto Y. , Ezaki T. , Arakawa M. . ( 1992; ). Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov.. Microbiol Immunol 36:, 1251–1275.[PubMed] [CrossRef]
    [Google Scholar]
  45. Yang H.-C. , Im W.-T. , Kim K. K. , An D.-S. , Lee S.-T. . ( 2006; ). Burkholderia terrae sp. nov., isolated from a forest soil. . Int J Syst Evol Microbiol 56:, 453–457. [CrossRef] [PubMed]
    [Google Scholar]
  46. Zhang H. , Hanada S. , Shigematsu T. , Shibuya K. , Kamagata Y. , Kanagawa T. , Kurane R. . ( 2000; ). Burkholderia kururiensis sp. nov., a trichloroethylene (TCE)-degrading bacterium isolated from an aquifer polluted with TCE. . Int J Syst Evol Microbiol 50:, 743–749. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.039859-0
Loading
/content/journal/ijsem/10.1099/ijs.0.039859-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error