1887

Abstract

A Gram-stain-negative, rod-shaped and white-coloured bacterial strain, designated LL03, was isolated from hexachlorocyclohexane-contaminated soil at Spolana Neratovice, Czech Republic, where lindane was formerly produced. Strain LL03 was found to be a degrader of α-, γ- and δ-isomers of hexachlorocyclohexane, although no significant degradation activity was observed for the β-isomer. A neighbour-joining tree based on 16S rRNA gene sequences showed that strain LL03 occupied a distinct phylogenetic position in the cluster, showing the highest similarity with JZ-1 (99.2 %). The DNA G+C content of strain LL03 was 67.0 mol%. DNA–DNA relatedness values of strain LL03 with its close phylogenetic neighbours were below the threshold level of 70 %, supporting its identification as a representative of a novel species of the genus . The predominant respiratory quinone was ubiquinone Q-10. The polar lipid profile of strain LL03 also corresponded to those reported for other species (phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, phosphatidylmonomethylethanolamine and sphingoglycolipid), supporting its identification as a member of the genus . Spermidine was identified as the major polyamine. The predominant fatty acids were 16 : 0, summed feature 3 (16 : 1ω7 and/or 16 : 1ω6), summed feature 8 (18 : 1ω7 and/or 18 : 1ω6) and 14 : 0 2-OH. The polar lipid pattern, the presence of spermidine and ubiquinone Q-10, the predominance of the cellular fatty acids Cω7, C and C 2-OH and the G+C content of the genomic DNA supported the affiliation of the strain to the genus . The results obtained after DNA–DNA hybridization, biochemical and physiological tests clearly distinguished it from closely related species of the genus . Therefore, strain LL03 represents a novel species of the genus for which the name LL03 sp. nov. is proposed; the type strain is LL03 ( = CCM 7981 = DSM 25433).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.039834-0
2013-02-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/2/673.html?itemId=/content/journal/ijsem/10.1099/ijs.0.039834-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Madden T. L. , Schäffer A. A. , Zhang J. , Zhang Z. , Miller W. , Lipman D. J. . ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef] [PubMed]
    [Google Scholar]
  2. Arden-Jones M. P. , McCarthy A. J. , Cross T. . ( 1979; ). Taxonomic and serologic studies on Micropolyspora faeni and Micropolyspora strains from soil bearing the specific epithet rectivirgula . . J Gen Microbiol 115:, 343–354. [CrossRef] [PubMed]
    [Google Scholar]
  3. ATSDR ( 2005; ). Toxicological Profile for Hexachlorocyclohexanes. U.S. Department of Health & Human Services. Public Health Service. Agency for Toxic Substances and Disease Registry. August, 2005. http://www.atsdr.cdc.gov/toxprofiles/tp43.html
  4. Bligh E. G. , Dyer W. J. . ( 1959; ). A rapid method of total lipid extraction and purification. . Can J Biochem Physiol 37:, 911–917. [CrossRef] [PubMed]
    [Google Scholar]
  5. Brosius J. , Palmer M. L. , Kennedy P. J. , Noller H. F. . ( 1978; ). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . . Proc Natl Acad Sci U S A 75:, 4801–4805. [CrossRef] [PubMed]
    [Google Scholar]
  6. Busse H.-J. , Kämpfer P. , Denner E. B. M. . ( 1999; ). Chemotaxonomic characterisation of Sphingomonas . . J Ind Microbiol Biotechnol 23:, 242–251. [CrossRef] [PubMed]
    [Google Scholar]
  7. Christensen W. B. . ( 1946; ). Urea decomposition as means of differentiating Proteus and Paracolon cultures from each other and from Salmonella and Shigella . . J Bacteriol 52:, 461–466.
    [Google Scholar]
  8. Collins M. D. , Jones D. . ( 1980; ). Lipids in the classification and identification of coryneform bacteria containing peptidoglycan based on 2,4-diamino butyric acid (DAB). . J Appl Bacteriol 48:, 459–470. [CrossRef]
    [Google Scholar]
  9. Cowan S. T. , Steel K. J. . ( 1965; ). Manual for the Identification of Medical Bacteria. London:: Cambridge University Press;.
    [Google Scholar]
  10. Gonzalez J. M. , Saiz-Jimenez C. . ( 2002; ). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4:, 770–773. [CrossRef] [PubMed]
    [Google Scholar]
  11. Gordon R. E. , Barnett D. A. , Handerhan J. E. , Pang C. H.-N. . ( 1974; ). Nocardia coeliaca, Nocardia autotrophica and Nocardia strain. . Int J Syst Bacteriol 24:, 54–63.[CrossRef]
    [Google Scholar]
  12. Ito M. , Prokop Z. , Klvana M. , Otsubo Y. , Tsuda M. , Damborský J. , Nagata Y. . ( 2007; ). Degradation of β-hexachlorocyclohexane by haloalkane dehalogenase LinB from γ-hexachlorocyclohexane-utilizing bacterium Sphingobium sp. MI1205. . Arch Microbiol 188:, 313–325. [CrossRef] [PubMed]
    [Google Scholar]
  13. Jukes T. H. , Cantor C. R. . ( 1969; ). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N. . . New York:: Academic Press;.
    [Google Scholar]
  14. Kaur J. , Kaur J. , Niharika N. , Lal R. . ( 2012; ). Sphingomonas laterariae LNB2T sp. nov. isolated from hexachlorocyclohexane (HCH) contaminated dumpsite in Lucknow. . Int J Syst Evol Microbiol 62:, 2891–2896.[PubMed] [CrossRef]
    [Google Scholar]
  15. Kumar M. , Verma M. , Lal R. . ( 2008; ). Devosia chinhatensis sp. nov., isolated from a hexachlorocyclohexane (HCH) dump site in India. . Int J Syst Evol Microbiol 58:, 861–865. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kumari R. , Subudhi S. , Suar M. , Dhingra G. , Raina V. , Dogra C. , Lal S. , van der Meer J. R. , Holliger C. , Lal R. . ( 2002; ). Cloning and characterization of lin genes responsible for the degradation of hexachlorocyclohexane isomers by Sphingomonas paucimobilis strain B90. . Appl Environ Microbiol 68:, 6021–6028. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kuykendall L. D. , Roy M. A. , O’Neil J. J. , Devine T. E. . ( 1988; ). Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . . Int J Syst Bacteriol 38:, 358–361. [CrossRef]
    [Google Scholar]
  18. Lal R. , Dadhwal M. , Kumari K. , Sharma P. , Singh A. , Kumari H. , Jit S. , Gupta S. K. , Nigam A. . & other authors ( 2008; ). Pseudomonas sp. to Sphingobium indicum: a journey of microbial degradation and bioremediation of hexachlorocyclohexane. . Indian J Microbiol 48:, 3–18. [CrossRef]
    [Google Scholar]
  19. Madhubala R. . ( 1997; ). Methods in molecular biology. . In Polyamine Protocols, vol. 79, pp. 131–136. Edited by Morgan D. . . Totowa:: Humana;. [CrossRef]
    [Google Scholar]
  20. Miller L. T. . ( 1982; ). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16:, 584–586.[PubMed]
    [Google Scholar]
  21. Prakash O. , Verma M. , Sharma P. , Kumar M. , Kumari K. , Singh A. , Kumari H. , Jit S. , Gupta S. K. . & other authors ( 2007a; ). Polyphasic approach of bacterial classification – an overview of recent advances. . Indian J Microbiol 47:, 98–108. [CrossRef]
    [Google Scholar]
  22. Prakash O. , Kumari K. , Lal R. . ( 2007b; ). Pseudomonas delhiensis sp. nov., from a fly ash dumping site of a thermal power plant. . Int J Syst Evol Microbiol 57:, 527–531. [CrossRef] [PubMed]
    [Google Scholar]
  23. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  24. Smibert R. M. , Kreig N. R. . ( 1994; ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Kreig N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  25. Takeuchi M. , Hamana K. , Hiraishi A. . ( 2001; ). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. . Int J Syst Evol Microbiol 51:, 1405–1417.[PubMed]
    [Google Scholar]
  26. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  27. Tourova T. P. , Antonov A. S. . ( 1988; ). Identification of microorganisms by rapid DNA-DNA hybridization. . Methods Microbiol 19:, 333–355. [CrossRef]
    [Google Scholar]
  28. Van de Peer Y. , De Wachter R. . ( 1994; ). treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. . Comput Appl Biosci 10:, 569–570.[PubMed]
    [Google Scholar]
  29. Wang B. Z. , Guo P. , Zheng J. W. , Hang B. J. , Li L. , He J. , Li S. P. . ( 2011; ). Sphingobium wenxiniae sp. nov., a synthetic pyrethroid (SP)-degrading bacterium isolated from activated sludge in an SP-manufacturing wastewater treatment facility. . Int J Syst Evol Microbiol 61:, 1776–1780. [CrossRef] [PubMed]
    [Google Scholar]
  30. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.039834-0
Loading
/content/journal/ijsem/10.1099/ijs.0.039834-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error