1887

Abstract

Two strains (NT29 and NT31) of xylose-assimilating yeasts were obtained from soils collected in northern Thailand. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, and sequence analysis of the D1/D2 domain of the large subunit rRNA gene and the internal transcribed spacer region, the two strains were found to represent two novel ascomycete yeast species. Strain NT29 was assigned to the genus belonging to the clade as a representative of sp. nov.; the type strain is NT29 ( = BCC 47634 = NBRC 108868 = CBS 12319). Strain NT31 represented a novel species, which was named sp. nov.; the type strain is NT31 ( = BCC 47635 = NBRC 108869 = CBS 12320).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.039818-0
2012-11-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/11/2786.html?itemId=/content/journal/ijsem/10.1099/ijs.0.039818-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Madden T. L. , Schäffer A. A. , Zhang J. , Zhang Z. , Miller W. , Lipman D. J. . ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef] [PubMed]
    [Google Scholar]
  2. Boonmak C. , Limtong S. , Jindamorakot S. , Am-In S. , Yongmanitchai W. , Suzuki K. , Nakase T. , Kawasaki H. . ( 2011; ). Candida xylanilytica sp. nov., a xylan-degrading yeast species isolated from Thailand. . Int J Syst Evol Microbiol 61:, 1230–1234. [CrossRef] [PubMed]
    [Google Scholar]
  3. Cadete R. M. , Santos R. O. , Melo M. A. , Mouro A. , Gonçalves D. L. , Stambuk B. U. , Gomes F. C. O. , Lachance M. A. , Rosa C. A. . ( 2009; ). Spathaspora arborariae sp. nov., a d-xylose-fermenting yeast species isolated from rotting wood in Brazil. . FEMS Yeast Res 9:, 1338–1342. [CrossRef] [PubMed]
    [Google Scholar]
  4. Cadete R. M. , Melo M. A. , Lopes M. R. , Pereira G. M. D. , Zilli J. E. , Vital M. J. S. , Gomes F. C. O. , Lachance M.-R. , Rosa C. A. . ( 2012; ). Candida amazonensis sp. nov., an ascomycetous yeast isolated from rotting wood in Amazonian Forest, Brazil. . Int J Syst Evol Microbiol 62:, 1438–1440. [CrossRef] [PubMed]
    [Google Scholar]
  5. Carvalho W. , Silva S. S. , Vitolo M. , Felipe M. G. A. , Mancilha I. M. . ( 2002; ). Improvement in xylitol production from sugarcane bagasse hydrolysate achieved by the use of a repeated-batch immobilized cell system. . Z Naturforsch C 57:, 109–112.[PubMed] [CrossRef]
    [Google Scholar]
  6. de García V. , Brizzio S. , Libkind D. , Rosa C. A. , van Broock M. . ( 2010; ). Wickerhamomyces patagonicus sp. nov., an ascomycetous yeast species from Patagonia, Argentina. . Int J Syst Evol Microbiol 60:, 1693–1696. [CrossRef] [PubMed]
    [Google Scholar]
  7. Doran-Peterson J. , Cook D. M. , Brandon S. K. . ( 2008; ). Microbial conversion of sugars from plant biomass to lactic acid or ethanol. . Plant J 54:, 582–592. [CrossRef] [PubMed]
    [Google Scholar]
  8. Edgar R. C. . ( 2004; ). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32:, 1792–1797. [CrossRef] [PubMed]
    [Google Scholar]
  9. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  10. Groenewald M. , Robert V. , Smith M. Th. . ( 2011; ). Five novel Wickerhamomyces- and Metschnikowia-related yeast species, Wickerhamomyces chaumierensis sp. nov., Candida pseudoflosculorum sp. nov., Candida danieliae sp. nov., Candida robnettiae sp. nov. and Candida eppingiae sp. nov., isolated from plants. . Int J Syst Evol Microbiol 61:, 2015–2022. [CrossRef] [PubMed]
    [Google Scholar]
  11. Guo X. , Zhu H. , Bai F. Y. . ( 2012; ). Candida cellulosicola sp. nov., a xylose-utilizing anamorphic yeast from rotten wood. . Int J Syst Evol Microbiol 62:, 242–245. [CrossRef] [PubMed]
    [Google Scholar]
  12. Hahn-Hägerdal B. , Galbe M. , Gorwa-Grauslund M. F. , Lidén G. , Zacchi G. . ( 2006; ). Bio-ethanol – the fuel of tomorrow from the residues of today. . Trends Biotechnol 24:, 549–556. [CrossRef] [PubMed]
    [Google Scholar]
  13. Jeffries T. W. , Kurtzman C. P. . ( 1994; ). Strain selection, taxonomy, and genetics of xylose-fermenting yeasts. . Enzyme Microb Technol 16:, 922–932. [CrossRef]
    [Google Scholar]
  14. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kuraishi H. , Katayama-Fujimura Y. , Sugiyama J. , Yokoyama T. . ( 1985; ). Ubiquinone systems in fungi. I. Distribution of ubiquinones in the major families of ascomycetes, basidiomycetes, and deuteromycetes, and their taxonomic implications. . Trans Mycol Soc Jpn 26:, 383–395.
    [Google Scholar]
  16. Kurtzman C. P. . ( 2011a; ). Pachysolen Boidin & Adzet (1957). . The Yeasts, a Taxonomic Study, , 5th edn., pp. 673–684. Edited by Kurtzman C. P. , Fell J. W. , Boekhout T. . . Amsterdam:: Elsevier;.
    [Google Scholar]
  17. Kurtzman C. P. . ( 2011b; ). Scheffersomyces Kurtzman & M. Suzuki (2010). . The Yeasts, a Taxonomic Study, , 5th edn., pp. 773–777. Edited by Kurtzman C. P. , Fell J. W. , Boekhout T. . . Amsterdam:: Elsevier;.
    [Google Scholar]
  18. Kurtzman C. P. . ( 2011c; ). Wickerhamomyces Kurtzman, Robnett & Basehoar-Powers (2008). . The Yeasts, a Taxonomic Study, , 5th edn., pp. 899–917. Edited by Kurtzman C. P. , Fell J. W. , Boekhout T. . . Amsterdam:: Elsevier;.
    [Google Scholar]
  19. Kurtzman C. P. . ( 2011d; ). Phylogeny of the ascomycetous yeasts and the renaming of Pichia anomala to Wickerhamomyces anomalus . . Antonie van Leeuwenhoek 99, 13–23. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kurtzman C. P. , Suzuki M. . ( 2010; ). Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces . . Mycoscience 51:, 2–14. [CrossRef]
    [Google Scholar]
  21. Kurtzman C. P. , Robnett C. J. , Basehoar-Powers E. . ( 2008; ). Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov.. FEMS Yeast Res 8:, 939–954. [CrossRef] [PubMed]
    [Google Scholar]
  22. Lachance M. A. , Bowles J. M. , Starmer W. T. , Barker J. S. . ( 1999; ). Kodamaea kakaduensis and Candida tolerans, two new ascomycetous yeast species from Australian Hibiscus flowers. . Can J Microbiol 45:, 172–177.[PubMed] [CrossRef]
    [Google Scholar]
  23. Lachance M. A. , Boekhout T. , Scorzetti G. , Fell J. W. , Kurtzman C. P. . ( 2011; ). Candida Berkhout. . The Yeasts, a Taxonomic Study, , 5th edn., pp. 987–1279. Edited by Kurtzman C. P. , Fell J. W. , Boekhout T. . . Amsterdam:: Elsevier;.
    [Google Scholar]
  24. Limtong S. , Yongmanitchai W. , Tun M. M. , Kawasaki H. , Seki T. . ( 2007; ). Kazachstania siamensis sp. nov., an ascomycetous yeast species from forest soil in Thailand. . Int J Syst Evol Microbiol 57:, 419–422. [CrossRef] [PubMed]
    [Google Scholar]
  25. Limtong S. , Yongmanitchai W. , Kawasaki H. , Fujiyama K. . ( 2009; ). Wickerhamomyces edaphicus sp. nov. and Pichia jaroonii sp. nov., two ascomycetous yeast species isolated from forest soil in Thailand. . FEMS Yeast Res 9:, 504–510. [CrossRef] [PubMed]
    [Google Scholar]
  26. Nakase T. , Suzuki M. . ( 1986; ). Bullera megalospora, a new species of yeast forming larger ballistospores isolated from dead leaves of Oryza sativa, Miscanthus sinesis and Sasa sp. in Japan. . J Gen Appl Microbiol 32:, 225–240. [CrossRef]
    [Google Scholar]
  27. Nitiyon S. , Boonmak C. , Am-In S. , Jindamorakot S. , Kawasaki H. , Yongmanitchai W. , Limtong S. . ( 2011; ). Candida saraburiensis sp. nov. and Candida prachuapensis sp. nov., xylose-utilizing yeast species isolated in Thailand. . Int J Syst Evol Microbiol 61:, 462–468. [CrossRef] [PubMed]
    [Google Scholar]
  28. O’Donnell K. . ( 1993; ). Fusarium and its near relatives. . In The Fungal Holomorph: Mitotic and Pleomorphic Speciation in Fungal Systematics, pp. 225–233. Edited by Reynolds D. R. , Taylor J. W. . . Wallingford, UK:: CAB International;.
    [Google Scholar]
  29. Rosa C. A. , Morais P. B. , Lachance M. A. , Santos R. O. , Melo W. G. P. , Viana R. H. O. , Bragança M. A. , Pimenta R. S. . ( 2009; ). Wickerhamomyces queroliae sp. nov. and Candida jalapaonensis sp. nov., two yeast species isolated from Cerrado ecosystem in North Brazil. . Int J Syst Evol Microbiol 59:, 1232–1236. [CrossRef] [PubMed]
    [Google Scholar]
  30. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  31. Shin K. S. , Bae K. S. , Lee K. H. , Park D. S. , Kwon G. S. , Lee J. B. . ( 2011; ). Wickerhamomyces ochangensis sp. nov., an ascomycetous yeast isolated from the soil of a potato field. . Int J Syst Evol Microbiol 61:, 2543–2546. [CrossRef] [PubMed]
    [Google Scholar]
  32. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  33. Wang S. A. , Li F. L. , Bai F. Y. . ( 2010; ). Candida laoshanensis sp. nov. and Candida qingdaonensis sp. nov., anamorphic, ascomycetous yeast species isolated from decayed wood. . Int J Syst Evol Microbiol 60:, 1697–1701. [CrossRef] [PubMed]
    [Google Scholar]
  34. White T. J. , Bruns T. , Lee S. , Taylor J. W. . ( 1990; ). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. . In PCR Protocols: a Guide to Methods and Applications, pp. 315–322. Edited by Innis M. A. , Gelfand D. H. , Sninsky J. J. , White T. J. . . New York:: Academic Press;.
    [Google Scholar]
  35. Yamada Y. , Kondo K. . ( 1973; ). Coenzyme Q system in the classification of the yeast genera Rhodotorula and Cryptococcus, and the yeast-like genera Sporobolomyces and Rhodosporidium . . J Gen Appl Microbiol 19:, 59–77. [CrossRef]
    [Google Scholar]
  36. Yarrow D. . ( 1998; ). Methods for the isolation, maintenance and identification of yeasts. . In The Yeasts, a Taxonomic Study, , 4th edn., pp. 77–100. Edited by Kurtzman C. P. , Fell J. W. . . Amsterdam:: Elsevier;. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.039818-0
Loading
/content/journal/ijsem/10.1099/ijs.0.039818-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error