1887

Abstract

’ DSM 4733 has been shown to be affiliated with the family instead of the , and due to its poor characterization has been omitted from the current edition of and removed to limbo. We isolated a novel sphingoglycolipid-containing dimorphic prosthecate bacterium, designated strain 247, from a pre-alpine freshwater lake. Strain 247 and ‘ DSM 4733 were characterized in detail. The rod-shaped cells were Gram-stain-negative, aerobic, catalase- and oxidase-positive, and formed a stalk or polar flagellum. Both strains grew optimally at 28–30 °C, and pH 6.0–8.0. The major fatty acids were Cω7, C and 11-methyl Cω7. C 2-OH represents the major 2-hydroxy fatty acid. Q-10 was the major respiratory quinone and the major polar lipids were diphosphatidylglycerol, phosphatidyldimethylethanolamine, phosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidylcholine, three glycolipids, two phosphoaminolipids and two unidentified sphingoglycolipids. The major polyamine was -homospermidine. The G+C content of genomic DNA of strains 247 and DSM 4733 was 67.6 mol% and 67.0 mol%, respectively. According to 16S rRNA gene sequence analysis and DNA–DNA hybridization, strains DSM 4733 and 247 were phylogenetically closely related (99.6 % 16S rRNA gene sequence similarity, 82.9 % DNA–DNA hybridization value) and affiliated to the genus . The closest recognized species was DSM 15581 (98.1 % sequence similarity). In addition, the presence of cystine arylamidase, absence of β-galactosidase, and the inability to utilize -arabinose, galactose and sucrose distinguished strains DSM 4733 and 247 from most other members of the family . So far, the dimorphic life cycle that involves a prosthecate and a flagellated stage is unique for strains DSM 4733 and 247 among all members of the family . Therefore, is reclassified as , with the type strain DSM 4733 ( = ATCC 15260 = CIP 106443 = VKM B-1368) and strain 247 (DSM 25078 = LMG 26658) as an additional strain of this species.

Funding
This study was supported by the:
  • Deutsche Forschungsgemeinschaft (Award OV 20/19-1 and OV 20/17-1)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.039636-0
2012-12-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/12/2835.html?itemId=/content/journal/ijsem/10.1099/ijs.0.039636-0&mimeType=html&fmt=ahah

References

  1. Abraham W. R., Meyer H., Lindholst S., Vancanneyt M., Smit J. 1997; Phospho- and sulfolipids as biomarkers of Caulobacter sensu lato, Brevundimonas and Hyphomonas . Syst Appl Microbiol 20:522–539 [View Article]
    [Google Scholar]
  2. Abraham W. R., Strömpl C., Meyer H., Lindholst S., Moore E. R. B., Christ R., Vancanneyt M., Tindall B. J., Bennasar A. other authors 1999; Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter . Int J Syst Bacteriol 49:1053–1073 [View Article][PubMed]
    [Google Scholar]
  3. Abraham W. R., Strömpl C., Vancanneyt M., Lünsdorf H., Moore E. R. 2001; Determination of the systematic position of the genus Asticcacaulis Poindexter by a polyphasic analysis. Int J Syst Evol Microbiol 51:27–34[PubMed]
    [Google Scholar]
  4. Abraham W. R., Macedo A. J., Lünsdorf H., Fischer R., Pawelczyk S., Smit J., Vancanneyt M. 2008; Phylogeny by a polyphasic approach of the order Caulobacterales, proposal of Caulobacter mirabilis sp. nov., Phenylobacterium haematophilum sp. nov. and Phenylobacterium conjunctum sp. nov., and emendation of the genus Phenylobacterium . Int J Syst Evol Microbiol 58:1939–1949 [View Article][PubMed]
    [Google Scholar]
  5. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  6. Bartscht K., Cypionka H., Overmann J. 1999; Evaluation of cell activity and of methods for the cultivation of bacteria from a natural lake community. FEMS Microbiol Ecol 28:249–259 [View Article]
    [Google Scholar]
  7. Bruns A., Cypionka H., Overmann J. 2002; Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea. Appl Environ Microbiol 68:3978–3987 [View Article][PubMed]
    [Google Scholar]
  8. Busse H. J., Auling G. 1988; Polyamine patterns as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [View Article]
    [Google Scholar]
  9. Busse H. J., Denner E. B., Buczolits S., Salkinoja-Salonen M., Bennasar A., Kämpfer P. 2003; Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas . Int J Syst Evol Microbiol 53:1253–1260 [View Article][PubMed]
    [Google Scholar]
  10. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [View Article][PubMed]
    [Google Scholar]
  11. CLSI 2007 Performance standards for antimicrobial susceptibility testing; 17th Informational Supplement. M100–S17 Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  12. Collins M. D. 1994; Isoprenoid quinones. In Chemical Methods in Prokaryotic Systematics pp. 345–401 Edited by Goodfellow M., O'Donnell A. G. Chichester: John Wiley & Sons;
    [Google Scholar]
  13. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  14. Donofrio R. S., Bestervelt L. L., Saha R., Bagley S. T. 2010; Selective enumeration strategies for Brevundimonas diminuta from drinking water. J Ind Microbiol Biotechnol 37:407–417 [View Article][PubMed]
    [Google Scholar]
  15. Garrity G. M., Bell J. A., Lilburn T. 2005; Order V Caulobacterales Henrici and Johnson 1935b. In Bergey's Manual of Systematic Bacteriology (The Proteobacteria), 2nd edn. vol. 2 pp. 287–323 Edited by Garrity G. M., Brenner D. J., Krieg N. R., Staley J. R. New York: Springer;
    [Google Scholar]
  16. Henrici A. T., Johnson D. E. 1935; Studies on fresh water bacteria. II. Stalked bacteria, a new order of Schizomycetes . J Bacteriol 30:61–93[PubMed]
    [Google Scholar]
  17. Huss V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [View Article]
    [Google Scholar]
  18. Jaspers E., Nauhaus K., Cypionka H., Overmann J. 2001; Multitude and temporal variability of ecological niches as indicated by the diversity of cultivated bacterioplankton. FEMS Microbiol Ecol 36:153–164 [View Article][PubMed]
    [Google Scholar]
  19. Jogler M., Siemens H., Chen H., Bunk B., Sikorski J., Overmann J. 2011; Identification and targeted cultivation of abundant novel freshwater sphingomonads and analysis of their population substructure. Appl Environ Microbiol 77:7355–7364 [View Article][PubMed]
    [Google Scholar]
  20. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: John Wiley;
    [Google Scholar]
  21. Lapteva N. A., Bel’kova N. L., Parfenova V. V. 2007; [Spatial distribution and species composition of prosthecate bacteria in Lake Baikal]. Mikrobiologiia 76:545–551 (in Russian) [PubMed]
    [Google Scholar]
  22. Lee J. S., Shin Y. K., Yoon J. H., Takeuchi M., Pyun Y. R., Park Y. H. 2001; Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov., and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol Microbiol 51:1491–1498[PubMed]
    [Google Scholar]
  23. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar H., Buchner A., Lai T., Steppi S. other authors 2004; ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  24. Macur R. E., Wheeler J. T., McDermott T. R., Inskeep W. P. 2001; Microbial populations associated with the reduction and enhanced mobilization of arsenic in mine tailings. Environ Sci Technol 35:3676–3682 [View Article][PubMed]
    [Google Scholar]
  25. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  26. Overmann J., Tuschak C., Sass H., Frostl J. 1998; The ecological niche of the consortium “Pelochromatium roseum” . Arch Microbiol 169:120–128 [View Article][PubMed]
    [Google Scholar]
  27. Pfennig N., Wagener S. 1986; An improved method of preparing wet mounts for photomicrographs of microorganisms. J Microbiol Methods 4:303–306 [View Article]
    [Google Scholar]
  28. Poindexter J. S. 1964; Biological properties and classification of the Caulobacter group. Bacteriol Rev 28:231–295[PubMed]
    [Google Scholar]
  29. Poindexter J. S. 1981a; Oligotrophy. Fast and famine existence. In Microbial Ecology vol. 5 pp. 63–89 Edited by Alexander M. New York: Plenum Publishing Corp;
    [Google Scholar]
  30. Poindexter J. S. 1981b; The caulobacters: ubiquitous unusual bacteria. Microbiol Rev 45:123–179[PubMed]
    [Google Scholar]
  31. Poindexter J. S. 1989; Genus Caulobacter Henrici and Johnson 1935. In Bergey’s Manual of Systematic Bacteriology vol. 3 pp. 1924–1939 Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  32. Reasoner D. J., Geldreich E. E. 1985; A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7[PubMed]
    [Google Scholar]
  33. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.;
    [Google Scholar]
  34. Schmidt J. M. 1981; The genera Caulobacter and Asticcacaulis . In The Prokaryotes, a Handbook on the Habitats, Isolation, and Identification of Bacteria vol. 1 pp. 466–476 Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. New York: Springer;
    [Google Scholar]
  35. Stahl D. A., Key R., Flesher B., Smit J. 1992; The phylogeny of marine and freshwater caulobacters reflects their habitat. J Bacteriol 174:2193–2198[PubMed]
    [Google Scholar]
  36. Stolz A., Busse H.-J., Kämpfer P. 2007; Pseudomonas knackmussii sp. nov.. Int J Syst Evol Microbiol 57:572–576 [View Article][PubMed]
    [Google Scholar]
  37. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417[PubMed]
    [Google Scholar]
  38. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [View Article]
    [Google Scholar]
  39. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  40. Tindall B. J. 1996; Respiratory lipoquinones as biomarkers. In Molecular Microbial Ecology Manual, section 4.1.5suppl. 1 Edited by Akkermans A., F. de Bruijn, D. van Elsas. Dordrecht: Kluwer;
    [Google Scholar]
  41. Tindall B. J. 2005; Respiratory lipoquinones as biomarkers. In Molecular Microbial Ecology Manual, Section 4.1.5Suppl. 1, 2nd edn.. Edited by Akkermans A., de Bruijn F., van Elsas D. Dordrecht, Netherlands: Kluwer Publishers;
    [Google Scholar]
  42. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the Ad Hoc Committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  43. Yabuuchi E., Kosako Y. 2005; Order IV Sphingomonadales Yabuuchi E., Kosako Y. In Bergey's Manual of Systematic Bacteriology (The proteobacteria part C), 2nd edn. vol. 2 pp. 230–286 Edited by Garrity G. M., Brenner D. J., Krieg N. R., Staley J. R. New York: Springer;
    [Google Scholar]
  44. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposal of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulate comb. nov. and two genospecies of the genus Sphingomonas . Microbiol Immunol 34:99–119[PubMed] [CrossRef]
    [Google Scholar]
  45. Yabuuchi E., Kosako Y., Naka T., Suzuki S., Yano I. 1999; Proposal of Sphingomonas suberifaciens (Van Bruggen, Jochimsen and Brown 1990) comb. nov., Sphingomonas natatoria (Sly 1985) comb. nov., Sphingomonas ursincola (Yurkov et al., 1997) comb. nov., and emendation of the genus Sphingomonas . Microbiol Immunol 43:339–349[PubMed] [CrossRef]
    [Google Scholar]
  46. Yabuuchi E., Kosako Y., Fujiwara N., Naka T., Matsunaga I., Ogura H., Kobayashi K. 2002; Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. . Int J Syst Evol Microbiol 52:1485–1496 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.039636-0
Loading
/content/journal/ijsem/10.1099/ijs.0.039636-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error