1887

Abstract

A moderately halophilic bacterium (strain RS-16) was isolated from saline soil in Rambla Salada, a Mediterranean hypersaline rambla in Murcia, south-east Spain. Cells of strain RS-16 were Gram-negative rods, oxidase-negative and motile by peritrichous flagella. Strain RS-16 required NaCl for growth, and grew between 1 % and 30 % (w/v) NaCl (optimum, 5–7.5 %), at temperatures of between 4 °C and 41 °C (optimum, 32–37 °C), and at pH values of between 5 and 10 (optimum, pH 7). Strain RS-16 was chemo-organotrophic and its metabolism was respiratory with oxygen and nitrate as terminal electron acceptors. It produced acids from -glucose and -inositol, accumulated poly-β-hydroxyalkanoate granules and produced cream colonies on MY 7.5 % (w/v). The DNA G+C content of strain RS-16 was 56.2 mol%. A comparison of 16S rRNA gene sequences confirmed the relationship of strain RS-16 to species of the genus . The most phylogenetically related species was SP4 (97.4 %16S rRNA gene sequence similarity). In DNA–DNA hybridization assays strain RS-16 showed DNA–DNA relatedness values of 62.7±3.09 %, 64.5±1.97 % and 64.7±1.74 % to CECT 7282, CECT 7284 and CECT 7283, respectively. The major fatty acids of strain RS-16 were Cω7 and C, and the predominant respiratory lipoquinone was ubiquinone, with nine isoprene units (Q-9). On the basis of these data, strain RS-16 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is RS-16 ( = CECT 7896 = LMG 26647).

Funding
This study was supported by the:
  • Spanish Ministerio de Ciencia e Innovación (Award CGL2011-25748, AGL2009-07656 and CGL2008-02399/BOS)
  • Consejería de Educación Ciencia y Empresa, of the Andalucian Regional Government (Award P07-CVI-03150 and P06-CVI-01850)
  • Plan Andaluz de Investigación
  • Spanish Ministerio de Ciencia e Innovación
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.039453-0
2012-12-01
2024-11-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/12/2903.html?itemId=/content/journal/ijsem/10.1099/ijs.0.039453-0&mimeType=html&fmt=ahah

References

  1. Amjres H., Béjar V., Quesada E., Abrini J., Llamas I. 2011; Halomonas rifensis sp. nov., an exopolysaccharide-producing, halophilic bacterium isolated from a solar saltern. Int J Syst Evol Microbiol 61:2600–2605 [View Article][PubMed]
    [Google Scholar]
  2. Arahal D. R., Vreeland R. H., Litchfield C. D., Mormile M. R., Tindall B. J., Oren A., Béjar V., Quesada E., Ventosa A. 2007; Recommended minimal standards for describing new taxa of the family Halomonadaceae . Int J Syst Evol Microbiol 57:2436–2446 [View Article][PubMed]
    [Google Scholar]
  3. Bouchotroch S., Quesada E., del Moral A., Llamas I., Béjar V. 2001; Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 51:1625–1632 [View Article][PubMed]
    [Google Scholar]
  4. de la Haba R. R., Sánchez-Porro C., Márquez M. C., Ventosa A. 2011; Taxonomy of Halophiles. In: Extremophiles handbook Part 3 Edited by Horikoshi K. Tokyo: Springer;
    [Google Scholar]
  5. Dobson S. J., Franzmann P. D. 1996; Unification of the genera Deleya (Bauman et al., 1993), Halomonas (Vreeland et al., 1980), and Halovibrio (Fendrich, 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons, 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae . Int J Syst Bacteriol 46:550–558 [View Article]
    [Google Scholar]
  6. Euzéby J. P. 2011 List of Prokaryotic Names with Standing in Nomenclature. http://www.bacterio.cict.fr. (Updated: December 08, 2011).
  7. Felsenstein J. 2002; phylip (phylogenetic inference package), version 3.6a. Distributed by the author. Department of Genome Science. University of Washington, Seattle, USA:
    [Google Scholar]
  8. Ferragut C., Leclerc H. 1976; Étude comparative des méthodes de détermination du Tm de l`ADN bacterien. Ann Microbiol 127:223–235 (in French)
    [Google Scholar]
  9. González-Domenech C. M., Martínez-Checa F., Quesada E., Béjar V. 2008a; Halomonas cerina sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 58:803–809 [View Article][PubMed]
    [Google Scholar]
  10. González-Domenech C. M., Béjar V., Martínez-Checa F., Quesada E. 2008b; Halomonas nitroreducens sp. nov., a novel nitrate- and nitrite-reducing species. Int J Syst Evol Microbiol 58:872–876 [View Article][PubMed]
    [Google Scholar]
  11. González-Domenech C. M., Martínez-Checa F., Quesada E., Béjar V. 2009; Halomonas fontilapidosi sp. nov., a moderately halophilic, denitrifying bacterium. Int J Syst Evol Microbiol 59:1290–1296 [View Article][PubMed]
    [Google Scholar]
  12. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., Yi H., Won S., Chun J. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article]
    [Google Scholar]
  14. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: John Wiley;
    [Google Scholar]
  15. Lind E., Ursing J. 1986; Clinical strains of Enterobacter agglomerans (synonyms: Erwinia herbicola, Erwinia milletiae) identified by DNA-DNA-hybridization. Acta Pathol Microbiol Immunol Scand [B] 94:205–213[PubMed]
    [Google Scholar]
  16. Llamas I., Béjar V., Martínez-Checa F., Martínez-Cánovas M. J., Molina I., Quesada E. 2011; Halomonas stenophila sp. nov., a halophilic bacterium that produces sulphate exopolysaccharides with biological activity. Int J Syst Evol Microbiol 61:2508–2514 [View Article][PubMed]
    [Google Scholar]
  17. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  18. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [View Article][PubMed]
    [Google Scholar]
  19. Martínez-Cánovas M. J., Béjar V., Martínez-Checa F., Quesada E. 2004a; Halomonas anticariensis sp. nov., from Fuente de Piedra, a saline-wetland wildfowl reserve in Malaga, southern Spain. Int J Syst Evol Microbiol 54:1329–1332 [View Article][PubMed]
    [Google Scholar]
  20. Martínez-Cánovas M. J., Quesada E., Llamas I., Béjar V. 2004b; Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 54:733–737 [View Article][PubMed]
    [Google Scholar]
  21. Martínez-Checa F., Béjar V., Martínez-Cánovas M. J., Llamas I., Quesada E. 2005; Halomonas almeriensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium from Cabo de Gata, Almería, south-east Spain. Int J Syst Evol Microbiol 55:2007–2011 [View Article][PubMed]
    [Google Scholar]
  22. Mata J. A., Martínez-Cánovas J., Quesada E., Béjar V. 2002; A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375 [View Article][PubMed]
    [Google Scholar]
  23. Moraine R. A., Rogovin P. 1966; Kinetics of polysaccharide B-1459 fermentation. Biotechnol Bioeng 8:511–524 [View Article]
    [Google Scholar]
  24. Oren A. 2010; Industrial and environmental applications of halophilic microorganisms. Environ Technol 31:825–834 [View Article][PubMed]
    [Google Scholar]
  25. Owen R. J., Hill L. R. 1979; The estimation of base compositions, base pairing and genome size of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists, 2nd edn. pp. 277–296 Edited by Skinner F. A., Lovelock D. W. London: Academic Press;
    [Google Scholar]
  26. Owen R. J., Pitcher D. 1985; Current methods for estimating DNA composition and levels of DNA-DNA hybridization. In Chemical Methods in Bacterial Systematics pp. 67–93 Edited by Goodfellow M., Minnikin E. London: Academic Press;
    [Google Scholar]
  27. Quesada E., Ventosa A., Rodríguez-Valera F., Ramos-Cormenzana A. 1983; Numerical taxonomy of moderately halophilic Gram-negative bacteria from hypersaline soils. J Gen Microbiol 129:2649–2657
    [Google Scholar]
  28. Quesada E., Ventosa A., Ruiz-Berraquero F., Ramos-Cormenzana A. 1984; Deleya halophila, a new species of moderately halophilic bacteria. Int J Syst Bacteriol 34:287–292 [View Article]
    [Google Scholar]
  29. Quesada E., Valderrama M. J., Béjar V., Ventosa A., Gutierrez M. C., Ruiz-Berraquero F., Ramos-Cormenzana A. 1990; Volcaniella eurihalina gen. nov., sp. nov., a moderately halophilic non-motile gram-negative rod. Int J Syst Bacteriol 40:261–267 [View Article]
    [Google Scholar]
  30. Rodríguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1981; Characteristics of the heterotropic bacterial populations in hypersaline environments of different salt concentrations. Microb Ecol 7:235–243 [View Article]
    [Google Scholar]
  31. Romano I., Giordano A., Lama L., Nicolaus B., Gambacorta A. 2005; Halomonas campaniensis sp. nov., a haloalkaliphilic bacterium isolated from a mineral pool of Campania Region, Italy. Syst Appl Microbiol 28:610–618 [View Article]
    [Google Scholar]
  32. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bateriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
  33. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C. J., Nesme X., Rosselló-Mora R., Swings J. other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [View Article][PubMed]
    [Google Scholar]
  34. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  35. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  36. Valderrama M. J., Quesada E., Béjar V., Ventosa A., Gutiérrez M. C., Ruiz-Berraquero F., Ramos-Cormenzana A. 1991; Deleya salina sp. nov., a moderately halophilic gram-negative bacterium. Int J Syst Bacteriol 41:377–384 [View Article]
    [Google Scholar]
  37. Ventosa A., Quesada E., Rodríguez-Valera F., Ruíz-Berraquero F., Ramos-Cormenzana A. 1982; Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968
    [Google Scholar]
  38. Wang Y.-N., Cai H., Yu S.-L., Wang Z.-Y., Liu J., Wu X.-L. 2007; Halomonas gudaonensis sp. nov., isolated from a saline soil contaminated by crude oil. Int J Syst Evol Microbiol 57:911–915 [View Article]
    [Google Scholar]
  39. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48:179–186 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.039453-0
Loading
/content/journal/ijsem/10.1099/ijs.0.039453-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error