1887

Abstract

A moderately halophilic bacterium (strain RS-16) was isolated from saline soil in Rambla Salada, a Mediterranean hypersaline rambla in Murcia, south-east Spain. Cells of strain RS-16 were Gram-negative rods, oxidase-negative and motile by peritrichous flagella. Strain RS-16 required NaCl for growth, and grew between 1 % and 30 % (w/v) NaCl (optimum, 5–7.5 %), at temperatures of between 4 °C and 41 °C (optimum, 32–37 °C), and at pH values of between 5 and 10 (optimum, pH 7). Strain RS-16 was chemo-organotrophic and its metabolism was respiratory with oxygen and nitrate as terminal electron acceptors. It produced acids from -glucose and -inositol, accumulated poly-β-hydroxyalkanoate granules and produced cream colonies on MY 7.5 % (w/v). The DNA G+C content of strain RS-16 was 56.2 mol%. A comparison of 16S rRNA gene sequences confirmed the relationship of strain RS-16 to species of the genus . The most phylogenetically related species was SP4 (97.4 %16S rRNA gene sequence similarity). In DNA–DNA hybridization assays strain RS-16 showed DNA–DNA relatedness values of 62.7±3.09 %, 64.5±1.97 % and 64.7±1.74 % to CECT 7282, CECT 7284 and CECT 7283, respectively. The major fatty acids of strain RS-16 were Cω7 and C, and the predominant respiratory lipoquinone was ubiquinone, with nine isoprene units (Q-9). On the basis of these data, strain RS-16 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is RS-16 ( = CECT 7896 = LMG 26647).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.039453-0
2012-12-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/12/2903.html?itemId=/content/journal/ijsem/10.1099/ijs.0.039453-0&mimeType=html&fmt=ahah

References

  1. Amjres H., Béjar V., Quesada E., Abrini J., Llamas I.. ( 2011;). Halomonas rifensis sp. nov., an exopolysaccharide-producing, halophilic bacterium isolated from a solar saltern. . Int J Syst Evol Microbiol 61:, 2600–2605 [CrossRef][PubMed]
    [Google Scholar]
  2. Arahal D. R., Vreeland R. H., Litchfield C. D., Mormile M. R., Tindall B. J., Oren A., Béjar V., Quesada E., Ventosa A.. ( 2007;). Recommended minimal standards for describing new taxa of the family Halomonadaceae. . Int J Syst Evol Microbiol 57:, 2436–2446. [CrossRef][PubMed]
    [Google Scholar]
  3. Bouchotroch S., Quesada E., del Moral A., Llamas I., Béjar V.. ( 2001;). Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. . Int J Syst Evol Microbiol 51:, 1625–1632. [CrossRef][PubMed]
    [Google Scholar]
  4. de la Haba R. R., Sánchez-Porro C., Márquez M. C., Ventosa A.. ( 2011;). Taxonomy of Halophiles. In: Extremophiles handbook Part 3 Edited by Horikoshi K... Tokyo:: Springer;.
    [Google Scholar]
  5. Dobson S. J., Franzmann P. D.. ( 1996;). Unification of the genera Deleya (Bauman et al., 1993), Halomonas (Vreeland et al., 1980), and Halovibrio (Fendrich, 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons, 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. . Int J Syst Bacteriol 46:, 550–558. [CrossRef]
    [Google Scholar]
  6. Euzéby J. P..( 2011;). List of Prokaryotic Names with Standing in Nomenclature. http://www.bacterio.cict.fr. (Updated: December 08, 2011).
  7. Felsenstein J.. ( 2002;). phylip (phylogenetic inference package), version 3.6a. Distributed by the author. . Department of Genome Science. University of Washington:, Seattle, USA;.
  8. Ferragut C., Leclerc H.. ( 1976;). Étude comparative des méthodes de détermination du Tm de l`ADN bacterien. . Ann Microbiol 127:, 223–235 (in French).
    [Google Scholar]
  9. González-Domenech C. M., Martínez-Checa F., Quesada E., Béjar V.. ( 2008a;). Halomonas cerina sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. . Int J Syst Evol Microbiol 58:, 803–809. [CrossRef][PubMed]
    [Google Scholar]
  10. González-Domenech C. M., Béjar V., Martínez-Checa F., Quesada E.. ( 2008b;). Halomonas nitroreducens sp. nov., a novel nitrate- and nitrite-reducing species. . Int J Syst Evol Microbiol 58:, 872–876. [CrossRef][PubMed]
    [Google Scholar]
  11. González-Domenech C. M., Martínez-Checa F., Quesada E., Béjar V.. ( 2009;). Halomonas fontilapidosi sp. nov., a moderately halophilic, denitrifying bacterium. . Int J Syst Evol Microbiol 59:, 1290–1296. [CrossRef][PubMed]
    [Google Scholar]
  12. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;.
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., Yi H., Won S., Chun J.. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef]
    [Google Scholar]
  14. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: John Wiley;.
    [Google Scholar]
  15. Lind E., Ursing J.. ( 1986;). Clinical strains of Enterobacter agglomerans (synonyms: Erwinia herbicola, Erwinia milletiae) identified by DNA-DNA-hybridization. . Acta Pathol Microbiol Immunol Scand [B] 94:, 205–213.[PubMed]
    [Google Scholar]
  16. Llamas I., Béjar V., Martínez-Checa F., Martínez-Cánovas M. J., Molina I., Quesada E.. ( 2011;). Halomonas stenophila sp. nov., a halophilic bacterium that produces sulphate exopolysaccharides with biological activity. . Int J Syst Evol Microbiol 61:, 2508–2514. [CrossRef][PubMed]
    [Google Scholar]
  17. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  18. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef][PubMed]
    [Google Scholar]
  19. Martínez-Cánovas M. J., Béjar V., Martínez-Checa F., Quesada E.. ( 2004a;). Halomonas anticariensis sp. nov., from Fuente de Piedra, a saline-wetland wildfowl reserve in Malaga, southern Spain. . Int J Syst Evol Microbiol 54:, 1329–1332. [CrossRef][PubMed]
    [Google Scholar]
  20. Martínez-Cánovas M. J., Quesada E., Llamas I., Béjar V.. ( 2004b;). Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. . Int J Syst Evol Microbiol 54:, 733–737. [CrossRef][PubMed]
    [Google Scholar]
  21. Martínez-Checa F., Béjar V., Martínez-Cánovas M. J., Llamas I., Quesada E.. ( 2005;). Halomonas almeriensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium from Cabo de Gata, Almería, south-east Spain. . Int J Syst Evol Microbiol 55:, 2007–2011. [CrossRef][PubMed]
    [Google Scholar]
  22. Mata J. A., Martínez-Cánovas J., Quesada E., Béjar V.. ( 2002;). A detailed phenotypic characterisation of the type strains of Halomonas species. . Syst Appl Microbiol 25:, 360–375. [CrossRef][PubMed]
    [Google Scholar]
  23. Moraine R. A., Rogovin P.. ( 1966;). Kinetics of polysaccharide B-1459 fermentation. . Biotechnol Bioeng 8:, 511–524. [CrossRef]
    [Google Scholar]
  24. Oren A.. ( 2010;). Industrial and environmental applications of halophilic microorganisms. . Environ Technol 31:, 825–834. [CrossRef][PubMed]
    [Google Scholar]
  25. Owen R. J., Hill L. R.. ( 1979;). The estimation of base compositions, base pairing and genome size of bacterial deoxyribonucleic acids. . In Identification Methods for Microbiologists, , 2nd edn., pp. 277–296. Edited by Skinner F. A., Lovelock D. W... London:: Academic Press;.
    [Google Scholar]
  26. Owen R. J., Pitcher D.. ( 1985;). Current methods for estimating DNA composition and levels of DNA-DNA hybridization. . In Chemical Methods in Bacterial Systematics, pp. 67–93. Edited by Goodfellow M., Minnikin E... London:: Academic Press;.
    [Google Scholar]
  27. Quesada E., Ventosa A., Rodríguez-Valera F., Ramos-Cormenzana A.. ( 1983;). Numerical taxonomy of moderately halophilic Gram-negative bacteria from hypersaline soils. . J Gen Microbiol 129:, 2649–2657.
    [Google Scholar]
  28. Quesada E., Ventosa A., Ruiz-Berraquero F., Ramos-Cormenzana A.. ( 1984;). Deleya halophila, a new species of moderately halophilic bacteria. . Int J Syst Bacteriol 34:, 287–292. [CrossRef]
    [Google Scholar]
  29. Quesada E., Valderrama M. J., Béjar V., Ventosa A., Gutierrez M. C., Ruiz-Berraquero F., Ramos-Cormenzana A.. ( 1990;). Volcaniella eurihalina gen. nov., sp. nov., a moderately halophilic non-motile gram-negative rod. . Int J Syst Bacteriol 40:, 261–267. [CrossRef]
    [Google Scholar]
  30. Rodríguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A.. ( 1981;). Characteristics of the heterotropic bacterial populations in hypersaline environments of different salt concentrations. . Microb Ecol 7:, 235–243. [CrossRef]
    [Google Scholar]
  31. Romano I., Giordano A., Lama L., Nicolaus B., Gambacorta A.. ( 2005;). Halomonas campaniensis sp. nov., a haloalkaliphilic bacterium isolated from a mineral pool of Campania Region, Italy. . Syst Appl Microbiol 28:, 610–618. [CrossRef]
    [Google Scholar]
  32. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bateriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  33. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C. J., Nesme X., Rosselló-Mora R., Swings J.. & other authors ( 2002;). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol 52:, 1043–1047. [CrossRef][PubMed]
    [Google Scholar]
  34. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  35. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  36. Valderrama M. J., Quesada E., Béjar V., Ventosa A., Gutiérrez M. C., Ruiz-Berraquero F., Ramos-Cormenzana A.. ( 1991;). Deleya salina sp. nov., a moderately halophilic gram-negative bacterium. . Int J Syst Bacteriol 41:, 377–384. [CrossRef]
    [Google Scholar]
  37. Ventosa A., Quesada E., Rodríguez-Valera F., Ruíz-Berraquero F., Ramos-Cormenzana A.. ( 1982;). Numerical taxonomy of moderately halophilic Gram-negative rods. . J Gen Microbiol 128:, 1959–1968.
    [Google Scholar]
  38. Wang Y.-N., Cai H., Yu S.-L., Wang Z.-Y., Liu J., Wu X.-L.. ( 2007;). Halomonas gudaonensis sp. nov., isolated from a saline soil contaminated by crude oil. . Int J Syst Evol Microbiol 57:, 911–915. [CrossRef]
    [Google Scholar]
  39. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R.. ( 1998;). Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48:, 179–186. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.039453-0
Loading
/content/journal/ijsem/10.1099/ijs.0.039453-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error