1887

Abstract

Two novel Gram-stain-positive bacteria, designated HR08-7 and HR08-43, were isolated from a sea sediment sample from Rishiri Island, Hokkaido, Japan, and their taxonomic positions were investigated by a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strains HR08-7 and HR08-43 and the members of the genus formed a monophyletic cluster with similarity range of 95.5–99.0 %. The peptidoglycan type of strains HR08-7 and HR08-43 was A4β. The predominant menaquinone of both strains was demethylmenaquinone DMK-9(H) and the major fatty acid was anteiso-C. The DNA G+C contents of strains HR08-7 and HR08-43 were 64.5 and 62.4 mol%, respectively. The results of phylogenetic analysis and DNA–DNA hybridization, along with differences of strains HR08-7 and HR08-43 from the recognized species in phenotypic characteristics, indicate that the two strains merit classification as representatives of two novel species of the genus , for which the names sp. nov. and sp. nov. are proposed; the type strains are HR08-7 ( = NBRC 105854 = DSM 24865) and HR08-43 ( = NBRC 105855 = DSM 24867), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.039297-0
2013-01-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/1/249.html?itemId=/content/journal/ijsem/10.1099/ijs.0.039297-0&mimeType=html&fmt=ahah

References

  1. Ezaki T., Hashimoto Y., Takeuchi N., Yamamoto H., Liu S.-L., Miura H., Matsui K., Yabuuchi E.. ( 1988;). Simple genetic method to identify viridans group streptococci by colorimetric dot hybridization and fluorometric hybridization in microdilution wells. . J Clin Microbiol 26:, 1708–1713.[PubMed]
    [Google Scholar]
  2. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  3. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  5. Finster K. W., Herbert R. A., Kjeldsen K. U., Schumann P., Lomstein B. A.. ( 2009;). Demequina lutea sp. nov., isolated from a high Arctic permafrost soil. . Int J Syst Evol Microbiol 59:, 649–653. [CrossRef][PubMed]
    [Google Scholar]
  6. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  7. Hamada M., Iino T., Iwami T., Harayama S., Tamura T., Suzuki K.. ( 2010;). Mobilicoccus pelagius gen. nov., sp. nov. and Piscicoccus intestinalis gen. nov., sp. nov., two new members of the family Dermatophilaceae, and reclassification of Dermatophilus chelonae (Masters et al. 1995) as Austwickia chelonae gen. nov., comb. nov.. J Gen Appl Microbiol 56:, 427–436. [CrossRef][PubMed]
    [Google Scholar]
  8. Hamada M., Yamamura H., Tamura T., Suzuki K., Hayakawa M.. ( 2012;). Lysinimicrobium mangrovi gen. nov., sp. nov., an actinobacterium isolated from the rhizosphere of a mangrove. . Int J Syst Evol Microbiol 62:, 1731–1735. [CrossRef][PubMed]
    [Google Scholar]
  9. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  10. Matsumoto A., Nakai K., Morisaki K., Ōmura S., Takahashi Y.. ( 2010;). Demequina salsinemoris sp. nov., isolated on agar media supplemented with ascorbic acid or rutin. . Int J Syst Evol Microbiol 60:, 1206–1209. [CrossRef][PubMed]
    [Google Scholar]
  11. Mikami H., Ishida Y.. ( 1983;). Post-column fluorometric detection of reducing sugars in high-performance liquid chromatography using arginine. . Bunseki Kagaku 32:, 207–210. [CrossRef]
    [Google Scholar]
  12. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  13. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  14. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  15. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  16. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  17. Ue H., Matsuo Y., Kasai H., Yokota A.. ( 2011;). Demequina globuliformis sp. nov., Demequina oxidasica sp. nov. and Demequina aurantiaca sp. nov., actinobacteria isolated from marine environments, and proposal of Demequinaceae fam. nov.. Int J Syst Evol Microbiol 61:, 1322–1329. [CrossRef][PubMed]
    [Google Scholar]
  18. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  19. Yi H., Schumann P., Chun J.. ( 2007;). Demequina aestuarii gen. nov., sp. nov., a novel actinomycete of the suborder Micrococcineae, and reclassification of Cellulomonas fermentans Bagnara et al. 1985 as Actinotalea fermentans gen. nov., comb. nov.. Int J Syst Evol Microbiol 57:, 151–156. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.039297-0
Loading
/content/journal/ijsem/10.1099/ijs.0.039297-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error