1887

Abstract

A Gram-staining-negative, rod-shaped, non-spore-forming bacterium isolated as a contaminant from a biopharmaceutical process (strain CCUG 53591) was studied for its taxonomic allocation. On the basis of 16S rRNA gene sequence similarity data, this strain was clearly allocated to the genus was shown to be the most closely related species on the basis of 16S rRNA gene sequence similarity (99.9 %), followed by (99.6 %) and (98.8 %). Strain ND5, previously reported as , but showing 100 % 16S rRNA gene sequence similarity to strain CCUG 53591, was included in the comparative study. Similarities to all other species of the genus were below 98.0 %. Chemotaxonomic data (major ubiquinone, Q-8; major polar lipids, phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol; and major fatty acids, C cyclo, C cyclo ω8 and C with C 3-OH as hydroxylated fatty acid) supported the affiliation of the isolate to the genus . DNA–DNA hybridization results (mean values) for strain CCUG 53591 with CCUG 59860 (34 %), DSM 21140 (57 %), DSM 17148 (17 %) and S-94 (11 %) clearly supported the separate taxonomic position of this strain. Strain ND5 showed DNA–DNA similarities of 78, 56 and 52 % to strain CCUG 53591, DSM 21140 and CCUG 59860, respectively. Phenotypic differentiation of the isolate from the most closely related species was possible by various features. Hence, strain CCUG 53591 represents a novel species, for which the name sp. nov. is proposed, with the type strain CCUG 53591 ( = CCM 7991). Strain ND5 is a second strain of this species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.039073-0
2013-02-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/2/412.html?itemId=/content/journal/ijsem/10.1099/ijs.0.039073-0&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J.. ( 1996;). Classification of bacteria isolated from a medieval wall painting. . J Biotechnol 47:, 39–52. [CrossRef]
    [Google Scholar]
  2. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F.. ( 1978;). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. . Proc Natl Acad Sci U S A 75:, 4801–4805. [CrossRef][PubMed]
    [Google Scholar]
  3. Busse H.-J., Auling G.. ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  4. Busse H.-J., Bunka S., Hensel A., Lubitz W.. ( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. . Int J Syst Bacteriol 47:, 698–708. [CrossRef]
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limits of phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  6. Fernandes C., Rainey F. A., Nobre M. F., Pinhal I., Folhas F., da Costa M. S.. ( 2005;). Herminiimonas fonticola gen. nov., sp. nov., a Betaproteobacterium isolated from a source of bottled mineral water. . Syst Appl Microbiol 28:, 596–603. [CrossRef][PubMed]
    [Google Scholar]
  7. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. (editors) ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  8. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of the protein molecules. . In Mammalian Protein Metabolism, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;.
    [Google Scholar]
  9. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  10. Kämpfer P., Steiof M., Dott W.. ( 1991;). Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol 21:, 227–251. [CrossRef]
    [Google Scholar]
  11. Kämpfer P., Dreyer U., Neef A., Dott W., Busse H.-J.. ( 2003;). Chryseobacterium defluvii sp. nov., isolated from wastewater. . Int J Syst Evol Microbiol 53:, 93–97. [CrossRef][PubMed]
    [Google Scholar]
  12. Kämpfer P., Busse H.-J., Falsen E.. ( 2006;). Herminiimonas aquatilis sp. nov., a new species from drinking water. . Syst Appl Microbiol 29:, 287–291. [CrossRef][PubMed]
    [Google Scholar]
  13. Lang E., Swiderski J., Stackebrandt E., Schumann P., Spröer C., Sahin N.. ( 2007;). Herminiimonas saxobsidens sp. nov., isolated from a lichen-colonized rock. . Int J Syst Evol Microbiol 57:, 2618–2622. [CrossRef][PubMed]
    [Google Scholar]
  14. Loveland-Curtze J., Miteva V. I., Brenchley J. E.. ( 2009;). Herminiimonas glaciei sp. nov., a novel ultramicrobacterium from 3042 m deep Greenland glacial ice. . Int J Syst Evol Microbiol 59:, 1272–1277. [CrossRef][PubMed]
    [Google Scholar]
  15. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar A., Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  16. Moaledj K.. ( 1986;). Comparison of Gram-staining and alternate methods, KOH test and aminopeptidase activity in aquatic bacteria: their application to numerical taxonomy. . J Microbiol Methods 5:, 303–310. [CrossRef]
    [Google Scholar]
  17. Muller D., Simeonova D. D., Riegel P., Mangenot S., Koechler S., Lièvremont D., Bertin P. N., Lett M.-C.. ( 2006;). Herminiimonas arsenicoxydans sp. nov., a metalloresistant bacterium. . Int J Syst Evol Microbiol 56:, 1765–1769. [CrossRef][PubMed]
    [Google Scholar]
  18. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O.. ( 2007;). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. . Nucleic Acids Res 35:, 7188–7196. [CrossRef][PubMed]
    [Google Scholar]
  19. Sahin N., Gonzalez J. M., Iizuka T., Hill J. E.. ( 2010;). Characterization of two aerobic ultramicrobacteria isolated from urban soil and a description of Oxalicibacterium solurbis sp. nov.. FEMS Microbiol Lett 307:, 25–29. [CrossRef][PubMed]
    [Google Scholar]
  20. Schleifer K. H.. ( 1985;). Analysis of the chemical composition and primary structure of murein. . Methods Microbiol 18:, 123–156. [CrossRef]
    [Google Scholar]
  21. Stamatakis A.. ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics 22:, 2688–2690. [CrossRef][PubMed]
    [Google Scholar]
  22. Stolz A., Busse H.-J., Kämpfer P.. ( 2007;). Pseudomonas knackmussii sp. nov.. Int J Syst Evol Microbiol 57:, 572–576. [CrossRef][PubMed]
    [Google Scholar]
  23. Tindall B. J.. ( 1990a;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  24. Tindall B. J.. ( 1990b;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  25. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. ( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol 31:, 241–250. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.039073-0
Loading
/content/journal/ijsem/10.1099/ijs.0.039073-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error