1887

Abstract

A Gram-stain-negative, non-spore-forming, non-motile, strictly aerobic, rod-shaped bacterial strain, designated CAU 1074, was isolated from marine sediment and its taxonomic position was investigated using a polyphasic approach. Strain CAU 1074 grew optimally at 30 °C and pH 6.5. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CAU 1074 formed a distinct lineage within the genus and was most closely related to KCTC 22198 (96.0 % similarity). Strain CAU 1074 contained MK-9 as the major isoprenoid quinone, and iso-C Cω9 and C as the major fatty acids. The cell wall peptidoglycan contained -diaminopimelic acid. The major whole-cell sugars were glucose, xylose, mannose and ribose. The polar lipids were composed of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, aminoglycolipid and two unidentified phospholipids. The DNA G+C content of the strain was 64.0 mol%. On the basis of phenotypic and chemotaxonomic data, and phylogenetic inference, strain CAU 1074 should be classified as a member of a novel species in the genus , for which the name sp. nov. is proposed; the type strain is CAU 1074 ( = KCTC 23578 = CCUG 61920). An emended description of the genus is also provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.039016-0
2013-01-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/1/19.html?itemId=/content/journal/ijsem/10.1099/ijs.0.039016-0&mimeType=html&fmt=ahah

References

  1. Bibi F., Chung E. J., Yoon H. S., Song G. C., Jeon C. O., Chung Y. R.. ( 2011;). Haloferula luteola sp. nov., an endophytic bacterium isolated from the root of a halophyte, Rosa rugosa, and emended description of the genus Haloferula. . Int J Syst Evol Microbiol 61:, 1837–1841. [CrossRef][PubMed]
    [Google Scholar]
  2. Cappuccino J. G., Sherman N.. ( 2002;). Microbiology: a Laboratory Manual, , 6th edn.. Menlo Park, CA:: Benjamin/Cummings;.
    [Google Scholar]
  3. Conn H. J., Bartholomew J. W., Jennison M. W.. ( 1957;). Staining methods. . In Manual of Microbial Methods, pp. 30–36. Edited by the Society of American Bacteriologists. New York:: McGraw-Hill;.
    [Google Scholar]
  4. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  6. Felsenstein J.. ( 1989;). phylip – phylogeny inference package (version 3.2). . Cladistics 5:, 164–166.
    [Google Scholar]
  7. Fitch W. M., Margoliash E.. ( 1967;). Construction of phylogenetic trees. . Science 155:, 279–284. [CrossRef][PubMed]
    [Google Scholar]
  8. Gordon R. E., Mihm J. M.. ( 1962;). Identification of Nocardia caviae (Erikson) nov. comb.. Ann N Y Acad Sci 98:, 628–636. [CrossRef]
    [Google Scholar]
  9. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. H... New York:: Academic Press;.
    [Google Scholar]
  10. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  11. Lányí B.. ( 1987;). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19:, 1–67. [CrossRef]
    [Google Scholar]
  12. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  13. Minnikin D. E., Hutchinson I. G., Caldicott A. B., Goodfellow M.. ( 1980;). Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. . J Chromatogr A 188:, 221–233. [CrossRef]
    [Google Scholar]
  14. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  15. Nam S. W., Kim W., Chun J., Goodfellow M.. ( 2004;). Tsukamurella pseudospumae sp. nov., a novel actinomycete isolated from activated sludge foam. . Int J Syst Evol Microbiol 54:, 1209–1212. [CrossRef][PubMed]
    [Google Scholar]
  16. Nicholson W. L., Setlow P.. ( 1990;). Sporulation, germination and outgrowth. . In Molecular Biological Methods for Bacillus, pp. 391–450. Edited by Harwood C. R., Cutting S. M... Chichester:: Wiley;.
    [Google Scholar]
  17. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  18. Schaal K. P.. ( 1986;). Genus Actinomyces Harz 1877, 133AL. . In Bergey’s Manual of Systematic Bacteriology, vol. 2, pp. 1383–1418. Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  19. Schleifer K. H.. ( 1985;). Analysis of the chemical composition and primary structure of murein. . Methods Microbiol 18:, 123–156. [CrossRef]
    [Google Scholar]
  20. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  21. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  22. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  23. Yoon J., Matsuo Y., Katsuta A., Jang J. H., Matsuda S., Adachi K., Kasai H., Yokota A.. ( 2008;). Haloferula rosea gen. nov., sp. nov., Haloferula harenae sp. nov., Haloferula phyci sp. nov., Haloferula helveola sp. nov. and Haloferula sargassicola sp. nov., five marine representatives of the family Verrucomicrobiaceae within the phylum ‘Verrucomicrobia’. . Int J Syst Evol Microbiol 58:, 2491–2500. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.039016-0
Loading
/content/journal/ijsem/10.1099/ijs.0.039016-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error