1887

Abstract

A Gram-staining negative, strictly aerobic bacterium, designated 101-1, was isolated from a sea tidal flat, Taean, Korea. The strain formed small light-yellow, smooth, and circular colonies on marine agar. Cells were weakly halophilic, motile rods showing catalase- and oxidase-positive reactions. Growth of strain 101-1 was observed at 15–40 °C (optimum, 30 °C), pH 5.0–8.0 (optimum, pH 6.5–7.0) and 1.0–9.0 % (w/v) NaCl (optimum, 2.0–3.5 %). The G+C content of the genomic DNA was 53.3 mol%. Strain 101-1 contained ubiquinone-10 (Q-10) as the respiratory quinone and iso-Cω9, iso-C and iso-C as major fatty acids. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain 101-1 formed a tight phylogenetic lineage with members of the genus and was most closely related to GW14-5 and S3-22 with 97.3 % and 96.3 % 16S rRNA gene sequence similarities, respectively. The DNA–DNA relatedness values between strain 101-1 and GW14-5 and S3-22 were 24.8±4.4 % and 32.2±3.6 %, respectively. Based on the data from the phenotypic and genotypic studies, strain 101-1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 101-1 ( = KACC 16184 = JCM 17742).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.038943-0
2012-12-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/12/3049.html?itemId=/content/journal/ijsem/10.1099/ijs.0.038943-0&mimeType=html&fmt=ahah

References

  1. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W.. ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef][PubMed]
    [Google Scholar]
  2. Felsenstein J.. ( 2002;). phylip (phylogeny inference package), version 3.6a. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  3. Gomori G.. ( 1955;). Preparation of buffers for use in enzyme studies. . In Methods in Enzymology, vol. 1, pp. 138–146. Edited by Colowick S. P., Kaplan N. O... New York:: Academic Press;. [CrossRef]
    [Google Scholar]
  4. Gonzalez J. M., Saiz-Jimenez C.. ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4:, 770–773. [CrossRef][PubMed]
    [Google Scholar]
  5. Jeon C. O., Park W., Ghiorse W. C., Madsen E. L.. ( 2004;). Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. . Int J Syst Evol Microbiol 54:, 93–97. [CrossRef][PubMed]
    [Google Scholar]
  6. Jin H. M., Jeong H., Moon E. J., Math R. K., Lee K., Kim H. J., Jeon C. O., Oh T. K., Kim J. F.. ( 2011a;). Complete genome sequence of the polycyclic aromatic hydrocarbon-degrading bacterium Alteromonas sp. strain SN2. . J Bacteriol 193:, 4292–4293. [CrossRef][PubMed]
    [Google Scholar]
  7. Jin H. M., Lee H. J., Kim J. M., Park M. S., Lee K., Jeon C. O.. ( 2011b;). Litorimicrobium taeanense gen. nov., sp. nov., isolated from a sandy beach. . Int J Syst Evol Microbiol 61:, 1392–1396. [CrossRef][PubMed]
    [Google Scholar]
  8. Jung J. Y., Kim J. M., Jin H. M., Kim S. Y., Park W., Jeon C. O.. ( 2011;). Litorimonas taeanensis gen. nov., sp. nov., isolated from a sandy beach. . Int J Syst Evol Microbiol 61:, 1534–1538. [CrossRef][PubMed]
    [Google Scholar]
  9. Kim J. M., Lee S. H., Jung J. Y., Jeon C. O.. ( 2010a;). Marinobacterium lutimaris sp. nov., isolated from a tidal flat. . Int J Syst Evol Microbiol 60:, 1828–1831. [CrossRef][PubMed]
    [Google Scholar]
  10. Kim J. M., Jung J. Y., Chae H. B., Park W., Jeon C. O.. ( 2010b;). Hwanghaeicola aestuarii gen. nov., sp. nov., a moderately halophilic bacterium isolated from a tidal flat of the Yellow Sea. . Int J Syst Evol Microbiol 60:, 2877–2881. [CrossRef][PubMed]
    [Google Scholar]
  11. Kim J. M., Lee H. J., Kim S. Y., Song J. J., Park W., Jeon C. O.. ( 2010;c). Analysis of the fine-scale population structure of “Candidatus Accumulibacter phosphatis” in enhanced biological phosphorus removal sludge, using fluorescence in situ hybridization and flow cytometric sorting. . Appl Environ Microbiol 76:, 3825–3835. [CrossRef][PubMed]
    [Google Scholar]
  12. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  13. Kwon K. K., Lee H. S., Yang S. H., Kim S. J.. ( 2005;). Kordiimonas gwangyangensis gen. nov., sp. nov., a marine bacterium isolated from marine sediments that forms a distinct phyletic lineage (Kordiimonadales ord. nov.) in the ‘Alphaproteobacteria’. . Int J Syst Evol Microbiol 55:, 2033–2037. [CrossRef][PubMed]
    [Google Scholar]
  14. Lányí B.. ( 1987;). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19:, 1–67. [CrossRef]
    [Google Scholar]
  15. Lee S. H., Shim J. K., Kim J. M., Choi H.-K., Jeon C. O.. ( 2011;). Henriciella litoralis sp. nov., isolated from a tidal flat, transfer of Maribaculum marinum Lai et al. 2009 to the genus Henriciella as Henriciella aquimarina nom. nov. and emended description of the genus Henriciella. . Int J Syst Evol Microbiol 61:, 722–727. [CrossRef][PubMed]
    [Google Scholar]
  16. Leifson E.. ( 1963;). Determination of carbohydrate metabolism of marine bacteria. . J Bacteriol 85:, 1183–1184.[PubMed]
    [Google Scholar]
  17. Lyman J., Fleming R. H.. ( 1940;). Composition of sea water. . J Mar Res 3:, 134–146.
    [Google Scholar]
  18. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M.. ( 1977;). Polar lipid composition in the classification of Nocardia and related bacteria. . Int J Syst Bacteriol 27:, 104–117. [CrossRef]
    [Google Scholar]
  19. Rosselló-Mora R., Amann R.. ( 2001;). The species concept for prokaryotes. . FEMS Microbiol Rev 25:, 39–67. [CrossRef][PubMed]
    [Google Scholar]
  20. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual, , 3rd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  21. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  22. Stamatakis A., Ott M., Ludwig T.. ( 2005;). RAxML-OMP: An efficient program for phylogenetic inference on SMPs. . In Proceedings of 8th International Conference on Parallel Computing Technologies (PaCT2005), Lecture Notes in Computer Science, 3506, 288–302, Springer Verlag;.
    [Google Scholar]
  23. Winberg P. C., Lynch T. P., Murray A., Jones A. R., Davis A. R.. ( 2007;). The importance of spatial scale for the conservation of tidal flat macrobenthos: An example from New South Wales, Australia. . Biol Conserv 134:, 310–320. [CrossRef]
    [Google Scholar]
  24. Xu X. W., Huo Y. Y., Bai X. D., Wang C. S., Oren A., Li S. Y., Wu M.. ( 2011;). Kordiimonas lacus sp. nov., isolated from a ballast water tank, and emended description of the genus Kordiimonas. . Int J Syst Evol Microbiol 61:, 422–426. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.038943-0
Loading
/content/journal/ijsem/10.1099/ijs.0.038943-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error