1887

Abstract

A strictly aerobic, Gram-stain-negative bacterium, designated strain No.6, was isolated from a lichen ( sp.) collected in Geogeum Island, Korea, and its taxonomic status was established by a polyphasic study. Cells of strain No.6 were non-motile, catalase- and oxidase-positive, non-spore-forming rods. Growth was observed at 15–35 °C (optimum, 25–30 °C), at pH 5.0–10.0 (optimum, pH 6.0–8.0) and with 0–3 % NaCl (optimum, 0–2 %). The predominant cellular fatty acids were summed feature 3 (comprising iso-C 2-OH and/or Cω7, 41.5 %), iso-C (26.7 %) and C (9.6 %), and menaquinone MK-7 was the only respiratory quinone. The G+C content of the genomic DNA of strain No.6 was 36.8 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain No.6 fell within the evolutionary group encompassed by the genus . Levels of 16S rRNA gene sequence similarity between the novel strain and the type strains of recognized species ranged from 92.1 to 99.1 %, the highest values being with SY1 (99.1 %) and IAM 14316 (98.5 %). DNA–DNA relatedness between strain No.6 and these two type strains were 32.0 and 5.7 %, respectively. The polar lipids found in strain No.6 were phosphatidylethanolamine, two unidentified phospholipids, three unidentified aminophospholipids, one glycolipid and four unidentified lipids. One unidentified sphingolipid was also found. On the basis of phenotypic and genotypic data, strain No.6 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is No.6 ( = KCTC 22613 = JCM 16113). An emended description of is also proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.038844-0
2013-02-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/2/755.html?itemId=/content/journal/ijsem/10.1099/ijs.0.038844-0&mimeType=html&fmt=ahah

References

  1. Bernardet J.-F., Nakagawa Y., Holmes B..Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef][PubMed]
    [Google Scholar]
  2. Brown T.. ( 2005;). Dot and slot blotting of DNA onto a positively charged nylon membrane using a manifold. . In Current Protocols in Molecular Biology, pp. 2.9.18–2.9.20. Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K... New York:: Wiley;.
    [Google Scholar]
  3. Chun J., Lee J. H., Jung Y. Y., Kim M. J., Kim S. I., Kim B. K., Lim Y. W.. ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef][PubMed]
    [Google Scholar]
  4. Duan S., Liu Z., Feng X., Zheng K., Cheng L.. ( 2009;). Sphingobacterium bambusae sp. nov., isolated from soil of bamboo plantation. . J Microbiol 47:, 693–698. [CrossRef][PubMed]
    [Google Scholar]
  5. Euzéby J. P.. ( 1998;). Taxonomic note: necessary correction of specific and subspecific epithets according to Rules 12c and 13b of the International Code of Nomenclature of Bacteria (1990 Revision). . Int J Syst Bacteriol 48:, 1073–1075. [CrossRef]
    [Google Scholar]
  6. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  8. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  9. Hall T.. ( 2007;). BioEdit. . In Biological Sequence Alignment Editor for Win95/98/NT/2K/XP. Carlsbad, CA:: Ibis Biosciences;.
    [Google Scholar]
  10. He X., Xiao T., Kuang H., Lan X., Tudahong M., Osman G., Fang C., Rahman E.. ( 2010;). Sphingobacterium shayense sp. nov., isolated from forest soil. . Int J Syst Evol Microbiol 60:, 2377–2381. [CrossRef][PubMed]
    [Google Scholar]
  11. Holmes B., Owen R. J., Weaver R. E.. ( 1981;). Flavobacterium multivorum, a new species isolated from human clinical specimens and previously known as group IIk, biotype 2. . Int J Syst Bacteriol 31:, 21–34. [CrossRef]
    [Google Scholar]
  12. Holmes B., Owen R. J., Hollis D. G.. ( 1982;). Flavobacterium spiritivorum, a new species isolated from human clinical specimens. . Int J Syst Bacteriol 32:, 157–165. [CrossRef]
    [Google Scholar]
  13. Holmes B., Weaver R. E., Steigerwalt A. G., Brenner D. J.. ( 1988;). A taxonomic study of Flavobacterium spiritivorum and Sphingobacterium mizutae: proposal of Flavobacterium yabuuchiae sp. nov. and Flavobacterium mizutaii comb. nov.. Int J Syst Bacteriol 38:, 348–353. [CrossRef]
    [Google Scholar]
  14. Høvik Hansen G. H., Sørheim R.. ( 1991;). Improved method for phenotypical characterization of marine bacteria. . J Microbiol Methods 13:, 231–241. [CrossRef]
    [Google Scholar]
  15. Kim K.-H., Ten L. N., Liu Q.-M., Im W. T., Lee S.-T.. ( 2006;). Sphingobacterium daejeonense sp. nov., isolated from a compost sample. . Int J Syst Evol Microbiol 56:, 2031–2036. [CrossRef][PubMed]
    [Google Scholar]
  16. Kimura M.. ( 1983;). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  17. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  18. Kumar S., Nei M., Dudley J., Tamura K.. ( 2008;). mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. . Brief Bioinform 9:, 299–306. [CrossRef][PubMed]
    [Google Scholar]
  19. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... New York:: Wiley;.
    [Google Scholar]
  20. Liu R., Liu H., Zhang C.-X., Yang S.-Y., Liu X.-H., Zhang K.-Y., Lai R.. ( 2008;). Sphingobacterium siyangense sp. nov., isolated from farm soil. . Int J Syst Evol Microbiol 58:, 1458–1462. [CrossRef][PubMed]
    [Google Scholar]
  21. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef][PubMed]
    [Google Scholar]
  22. Matsuyama H., Katoh H., Ohkushi T., Satoh A., Kawahara K., Yumoto I.. ( 2008;). Sphingobacterium kitahiroshimense sp. nov., isolated from soil. . Int J Syst Evol Microbiol 58:, 1576–1579. [CrossRef][PubMed]
    [Google Scholar]
  23. Mehnaz S., Weselowski B., Lazarovits G.. ( 2007;). Sphingobacterium canadense sp. nov., an isolate from corn roots. . Syst Appl Microbiol 30:, 519–524. [CrossRef][PubMed]
    [Google Scholar]
  24. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  25. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  26. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc.;
  27. Shivaji S., Ray M. K., Shyamala Rao N., Saisree L., Jagannadham M. V., Seshu Kumar G., Reddy G. S. N., Bhargava P. M.. ( 1992;). Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schirmacher Oasis, Antarctica. . Int J Syst Bacteriol 42:, 102–106. [CrossRef]
    [Google Scholar]
  28. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Manual of Method for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  29. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33:, 152–155.
    [Google Scholar]
  30. Steyn P. L., Segers P., Vancanneyt M., Sandra P., Kersters K., Joubert J. J.. ( 1998;). Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov.. Int J Syst Bacteriol 48:, 165–177. [CrossRef][PubMed]
    [Google Scholar]
  31. Takeuchi M., Yokota A.. ( 1992;). Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb. nov., Sphingobacterium thalpophilum comb. nov. and two genospecies of the genus Sphingobacterium, and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum. . J Gen Appl Microbiol 38:, 465–482. [CrossRef]
    [Google Scholar]
  32. Tamaoka J.. ( 1986;). Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. . Methods Enzymol 123:, 251–256. [CrossRef][PubMed]
    [Google Scholar]
  33. Ten L. N., Liu Q.-M., Im W.-T., Aslam Z., Lee S.-T.. ( 2006;). Sphingobacterium composti sp. nov., a novel DNase-producing bacterium isolated from compost. . J Microbiol Biotechnol 16:, 1728–1733.
    [Google Scholar]
  34. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  35. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  36. Wei W., Zhou Y., Wang X., Huang X., Lai R.. ( 2008;). Sphingobacterium anhuiense sp. nov., isolated from forest soil. . Int J Syst Evol Microbiol 58:, 2098–2101. [CrossRef][PubMed]
    [Google Scholar]
  37. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  38. Yabuuchi E., Kaneko T., Yano I., Moss C. W., Miyoshi N.. ( 1983;). Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC groups IIk-2 and IIb. . Int J Syst Bacteriol 33:, 580–598. [CrossRef]
    [Google Scholar]
  39. Yano I., Tomiyasu I., Yabuuchi E.. ( 1982;). Long chain base composition of strains of three species of Sphingobacterium gen. nov.. FEMS Microbiol Lett 15:, 303–307. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.038844-0
Loading
/content/journal/ijsem/10.1099/ijs.0.038844-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error