1887

Abstract

Three actinobacterial strains, CR30, CR36 and CR38, were isolated from rhizosphere soil of plants collected in Spain. The strains were filamentous, Gram-stain-positive and produced single spores. Phylogenetic, chemotaxonomic and morphological analyses confirmed that the three strains belonged to the genus . 16S rRNA gene sequence analysis of strains CR30 and CR36 showed a close relationship to NAR01 (99.3 % similarity) while strain CR38 had a similarity of 99.0 % with Lupac 09. In addition, gene phylogeny clearly differentiated the novel isolates from recognized species. DNA–DNA hybridization, BOX-PCR and ARDRA profiles confirmed that these strains represent novel genomic species. The cell-wall peptidoglycan of strains CR30 and CR38 contained -diaminopimelic acid. Both strains had MK-10(H) as the main menaquinone and a phospholipid type II pattern. An array of physiological tests also differentiated the isolates from their closest neighbours. Considering all the data obtained, it is proposed that strains CR30 and CR36 represent a novel species under the name sp. nov. (type strain CR30 = CECT 7891 = DSM 45599), whereas CR38 represents a second novel species, for which the name sp. nov. is proposed, with CR38 ( = CECT 7892 = DSM 45600) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.038695-0
2012-12-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/12/2971.html?itemId=/content/journal/ijsem/10.1099/ijs.0.038695-0&mimeType=html&fmt=ahah

References

  1. Bates R. G. , Bower V. E. . ( 1956; ). Alkaline solutions for pH control. . Anal Chem 28:, 1322–1324. [CrossRef]
    [Google Scholar]
  2. Carro L. , Spröer C. , Alonso P. , Trujillo M. E. . ( 2012; ). Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis. . Syst Appl Microbiol 35:, 73–80. [CrossRef] [PubMed]
    [Google Scholar]
  3. Cashion P. , Holder-Franklin M. A. , McCully J. , Franklin M. . ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef] [PubMed]
    [Google Scholar]
  4. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  5. de Menezes A. B. , Lockhart R. J. , Cox M. J. , Allison H. E. , McCarthy A. J. . ( 2008; ). Cellulose degradation by micromonosporas recovered from freshwater lakes and classification of these actinomycetes by DNA gyrase B gene sequencing. . Appl Environ Microbiol 74:, 7080–7084. [CrossRef] [PubMed]
    [Google Scholar]
  6. Doetsch R. N. . ( 1981; ). Determinative methods of light microscopy. . In Manual of Methods for General Bacteriology, pp. 21–33. Edited by Gerdhardt P. , Murray R. G. E. , Costilow R. N. , Nester E. W. , Wood W. A. , Krieg N. R. , Phillips G. B. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  7. Euzéby J. P. . ( 2011; ). List of prokaryotic names with standing in nomenclature. . http://www.bacterio.cict.fr/
    [Google Scholar]
  8. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  9. Fitch W. M. . ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  10. García L. C. , Martínez-Molina E. , Trujillo M. E. . ( 2010; ). Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum . . Int J Syst Evol Microbiol 60:, 331–337. [PubMed] [CrossRef]
    [Google Scholar]
  11. Hasegawa T. , Takizawa M. , Tanida S. . ( 1983; ). A rapid analysis for chemical grouping of aerobic actinomycetes. . J Gen Appl Microbiol 29:, 319–322. [CrossRef]
    [Google Scholar]
  12. Hirsch P. , Mevs U. , Kroppenstedt R. M. , Schumann P. , Stackebrandt E. . ( 2004; ). Cryptoendolithic actinomycetes from Antarctic sandstone rock samples: Micromonospora endolithica sp. nov. and two isolates related to Micromonospora coerulea Jensen 1932. . Syst Appl Microbiol 27:, 166–174. [PubMed] [CrossRef]
    [Google Scholar]
  13. Huß V. A. R. , Festl H. , Schleifer K. H. . ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef]
    [Google Scholar]
  14. Jones K. L. . ( 1949; ). Fresh isolates of actinomycetes in which the presence of sporogeneous aerial mycelia is a fluctuating characteristic. . J Bacteriol 57:, 141–146.
    [Google Scholar]
  15. Kasai H. , Tamura T. , Harayama S. . ( 2000; ). Intrageneric relationships among Micromonospora species deduced from gyrB-based phylogeny and DNA relatedness. . Int J Syst Evol Microbiol 50:, 127–134. [PubMed] [CrossRef]
    [Google Scholar]
  16. Kim O.-S. , Cho Y.-J. , Lee K. , Yoon S.-H. , Kim M. , Na H. , Park S.-C. , Jeon Y. S. , Lee J.-H. , Yi H. , Won S. , Chun J. . ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kirby B. M. , Meyers P. R. . ( 2010; ). Micromonospora tulbaghiae sp. nov., isolated from the leaves of wild garlic, Tulbaghia violacea . . Int J Syst Evol Microbiol 60:, 1328–1333. [CrossRef] [PubMed]
    [Google Scholar]
  19. Lechevalier M. P. , De Bièvre C. , Lechevalier H. . ( 1977; ). Chemotaxonomy of aerobic actinomycetes: phospholipid composition. . Biochem Syst Ecol 5:, 249–260. [CrossRef]
    [Google Scholar]
  20. Ludwig W. , Strunk O. , Westram R. , Richter L. , Meier H. , Yadhukumar , Buchner A. , Lai T. , Steppi S. . & other authors ( 2004; ). ARB: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [PubMed] [CrossRef]
    [Google Scholar]
  21. Maldonado L. A. , Stach J. E. , Ward A. C. , Bull A. T. , Goodfellow M. . ( 2008; ). Characterisation of micromonosporae from aquatic environments using molecular taxonomic methods. . Antonie van Leeuwenhoek 94:, 289–298. [CrossRef] [PubMed]
    [Google Scholar]
  22. Mandel M. , Marmur J. . ( 1968; ). Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. . Methods Enzymol 12B:, 195–206. [CrossRef]
    [Google Scholar]
  23. McIlvaine T. C. . ( 1921; ). A buffer solution for colorimetric comparison. . J Biol Chem 49:, 183–186.
    [Google Scholar]
  24. Minnikin D. E. , O’Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal K. , Parlett J. H. . ( 1984; ). An integrated procedure for extracting bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  25. Rhuland L. E. , Work E. , Denman R. F. , Hoare D. S. . ( 1955; ). The behavior of the isomers of α,ϵ-diaminopimelic acid on paper chromatograms. . J Am Chem Soc 77:, 4844–4846. [CrossRef]
    [Google Scholar]
  26. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  27. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids. . USFCC Newsl 20:, 1–6.
    [Google Scholar]
  28. Schröder K.-H. , Naumann L. , Kroppenstedt R. M. , Reischl U. . ( 1997; ). Mycobacterium hassiacum sp. nov., a new rapidly growing thermophilic mycobacterium. . Int J Syst Bacteriol 47:, 86–91. [PubMed] [CrossRef]
    [Google Scholar]
  29. Shirling E. B. , Gottlieb D. . ( 1966; ). Methods for characterization of Streptomyces species. . Int J Syst Bacteriol 16:, 313–340. [CrossRef]
    [Google Scholar]
  30. Staneck J. L. , Roberts G. D. . ( 1974; ). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. . Appl Microbiol 28:, 226–231.[PubMed]
    [Google Scholar]
  31. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  32. Tanasupawat S. , Jongrungruangchok S. , Kudo T. . ( 2010; ). Micromonospora marina sp. nov., isolated from sea sand. . Int J Syst Evol Microbiol 60:, 648–652. [CrossRef] [PubMed]
    [Google Scholar]
  33. Thawai C. , Tanasupawat S. , Itoh T. , Suwanborirux K. , Kudo T. . ( 2005; ). Micromonospora siamensis sp. nov., isolated from Thai peat swamp forest. . J Gen Appl Microbiol 51:, 229–234. [CrossRef] [PubMed]
    [Google Scholar]
  34. Thawai C. , Tanasupawat S. , Suwanborirux K. , Itoh T. , Kudo T. . ( 2007; ). Micromonospora narathiwatensis sp. nov., from Thai peat swamp forest soils. . J Gen Appl Microbiol 53:, 287–293. [CrossRef] [PubMed]
    [Google Scholar]
  35. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  36. Trujillo M. E. , Fernández-Molinero C. , Velázquez E. , Kroppenstedt R. M. , Schumann P. , Mateos P. F. , Martínez-Molina E. . ( 2005; ). Micromonospora mirobrigensis sp. nov.. Int J Syst Evol Microbiol 55:, 877–880. [PubMed] [CrossRef]
    [Google Scholar]
  37. Trujillo M. E. , Kroppenstedt R. M. , Schumann P. , Carro L. , Martínez-Molina E. . ( 2006; ). Micromonospora coriariae sp. nov., isolated from root nodules of Coriaria myrtifolia . . Int J Syst Evol Microbiol 56:, 2381–2385. [PubMed] [CrossRef]
    [Google Scholar]
  38. Trujillo M. E. , Kroppenstedt R. M. , Fernández-Molinero C. , Schumann P. , Martínez-Molina E. . ( 2007; ). Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius . . Int J Syst Evol Microbiol 57:, 2799–2804. [CrossRef] [PubMed]
    [Google Scholar]
  39. Trujillo M. E. , Alonso-Vega P. , Rodríguez R. , Carro L. , Cerda E. , Alonso P. , Martínez-Molina E. . ( 2010; ). The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius . . ISME J 4:, 1265–1281. [PubMed] [CrossRef]
    [Google Scholar]
  40. Vincent J. M. . ( 1970; ). The cultivation, isolation and maintenance of rhizobia. . In A Manual for the Practical Study of Root Nodule Bacteria, pp. 1–13. Edited by Vincent J. M. . . Oxford:: Blackwell Scientific;.
    [Google Scholar]
  41. Wang C. , Xu X. X. , Qu Z. , Wang H. L. , Lin H. P. , Xie Q. Y. , Ruan J. S. , Hong K. . ( 2011; ). Micromonospora rhizosphaerae sp. nov., isolated from mangrove rhizosphere soil. . Int J Syst Evol Microbiol 61:, 320–324. [PubMed] [CrossRef]
    [Google Scholar]
  42. Williams S. T. , Goodfellow M. , Alderson G. , Wellington E. M. H. , Sneath P. H. A. , Sackin M. J. . ( 1983; ). Numerical classification of Streptomyces and related genera. . J Gen Microbiol 129:, 1743–1813.[PubMed]
    [Google Scholar]
  43. Zhang L. , Xi L. , Ruan J. , Huang Y. . ( 2012; ). Micromonospora yangpuensis sp. nov., isolated from a sponge. . Int J Syst Evol Microbiol 62:, 272–278. [PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.038695-0
Loading
/content/journal/ijsem/10.1099/ijs.0.038695-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error