1887

Abstract

A moderately thermophilic and strictly anaerobic bacterium, designated HS1, was isolated from offshore hot spring sediment in Xiamen, China. Cells were Gram-negative, catalase-positive, oxidase-negative, slender and flexible rods without flagella. The strain could grow at 35–55 °C (optimum at 50 °C) and in 1–8 % NaCl (w/v; optimum 2–4 %). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain HS1 was affiliated with the family and shared a distant relationship with the previously described genera. The isolate was most closely related to Fru22 with 16S rRNA gene sequence similarity of 92.4 %, followed by the other members of the family with 88.7–91.1 % similarity. The dominant cellular fatty acids were iso-C and anteiso-C. The predominant quinone was MK-7. The major polar lipids were phosphatidylethanolamine (PE) and an unknown polar lipid. The genomic DNA G+C content was 38.7 mol%. Besides the phylogenetically distant relationship, strain HS1 was obviously distinguished from the most closely related genera in several phenotypic properties including colony colour and pigment production, optimal temperature, optimal NaCl, relation to O, bicarbonate/carbonate requirement, catalase activity, nitrate reduction, fermentation products and cellular fatty acid profile. Based on the phenotypic and phylogenetic data, strain HS1 represents a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is HS1 ( = DSM 19012 = CGMCCC 1.5071).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.038547-0
2013-01-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/1/109.html?itemId=/content/journal/ijsem/10.1099/ijs.0.038547-0&mimeType=html&fmt=ahah

References

  1. Bazylinski D. A. , Wirsen C. O. , Jannasch H. W. . ( 1989; ). Microbial utilization of naturally occurring hydrocarbons at the guaymas basin hydrothermal vent site. . Appl Environ Microbiol 55:, 2832–2836.[PubMed]
    [Google Scholar]
  2. Brock T. D. , Freeze H. . ( 1969; ). Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. . J Bacteriol 98:, 289–297.[PubMed]
    [Google Scholar]
  3. Chao Z. , Gao Z. , Qin Q. , Ruan L. . ( 2012; ). Mangroviflexus xiamenensis gen. nov., sp. nov., a member of the family Marinilabiaceae isolated from mangrove sediment. . Int J Syst Evol Microbiol 62:, 1819–1824.[PubMed] [CrossRef]
    [Google Scholar]
  4. Chun J. , Lee J. H. , Jung Y. , Kim M. , Kim S. , Kim B. K. , Lim Y. W. . ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef] [PubMed]
    [Google Scholar]
  5. Denger K. , Warthmann R. , Ludwig W. , Schink B. . ( 2002; ). Anaerophaga thermohalophila gen. nov., sp. nov., a moderately thermohalophilic, strictly anaerobic fermentative bacterium. . Int J Syst Evol Microbiol 52:, 173–178.[PubMed]
    [Google Scholar]
  6. Dong X. Z. , Cai M. Y. . ( 2001; ). Manual for the Systematic Identification of General Bacteria. Beijing:: Science Press;.
    [Google Scholar]
  7. Fitch W. M. . ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  8. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  9. Komagata K. , Suzuki K. . ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  10. Madigan M. T. , Oren A. . ( 1999; ). Thermophilic and halophilic extremophiles. . Curr Opin Microbiol 2:, 265–269. [CrossRef] [PubMed]
    [Google Scholar]
  11. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  12. Minnikin D. E. , O’Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  13. Miyazaki M. , Koide O. , Kobayashi T. , Mori K. , Shimamura S. , Nunoura T. , Imachi H. , Inagaki F. , Nagahama T. . & other authors ( 2012; ). Geofilum rubicundum gen. nov. sp. nov., isolated from a deep subseafloor sediment off the Shimokita Peninsula. . Int J Syst Evol Microbiol 62:, 1075–1080. [CrossRef] [PubMed]
    [Google Scholar]
  14. Nakagawa Y. , Yamasato K. . ( 1996; ). Emendation of the genus Cytophaga and transfer of Cytophaga agarovorans and Cytophaga salmonicolor to Marinilabilia gen. nov.: Phylogenetic analysis of the FlavobacteriumCytophaga complex. . Int J Syst Bacteriol 46:, 599–603. [CrossRef]
    [Google Scholar]
  15. Robb F. , Antranikian G. , Grogan D. , Driessen A. . ( 2007; ). Thermophiles: Biology and Technology at High Temperatures. Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  16. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  17. Syn C. K. , Swarup S. . ( 2000; ). A scalable protocol for the isolation of large-sized genomic DNA within an hour from several bacteria. . Anal Biochem 278:, 86–90. [CrossRef] [PubMed]
    [Google Scholar]
  18. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  19. Thompson J. D. , Higgins D. G. , Gibson T. J. . ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef] [PubMed]
    [Google Scholar]
  20. Vieille C. , Zeikus G. J. . ( 2001; ). Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. . Microbiol Mol Biol Rev 65:, 1–43. [CrossRef] [PubMed]
    [Google Scholar]
  21. Weisburg W. G. , Barns S. M. , Pelletier D. A. , Lane D. J. . ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  22. Wolin E. A. , Wolin M. J. , Wolfe R. S. . ( 1963; ). Formation of methane by bacterial extracts. . J Biol Chem 238:, 2882–2886.[PubMed]
    [Google Scholar]
  23. Zhilina T. N. , Appel R. , Probian C. , Brossa E. L. , Harder J. , Widdel F. , Zavarzin G. A. . ( 2004; ). Alkaliflexus imshenetskii gen. nov. sp. nov., a new alkaliphilic gliding carbohydrate-fermenting bacterium with propionate formation from a soda lake. . Arch Microbiol 182:, 244–253. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.038547-0
Loading
/content/journal/ijsem/10.1099/ijs.0.038547-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error